Sains Malaysiana 43(6)(2014):
851–859
Enhanced
Mechanical Properties of Chitosan/EDTA-GO Nanocomposites Thin Films
(Peningkatan
Sifat Mekanik Filem Nipis Nanokomposit Kitosan/EDTA-GO)
N.I. SYUHADA1, N.M.
HUANG1*, S.
VIJAY
KUMAR2, H.N. LIM3, S.A.
RAHMAN1, G.S.H.
THIEN1, N.A.
IBRAHIM3, M.
AHMAD3& P. MORADIHAMEDANI3
1Low Dimensional Materials Research
Centre, Department of Physics, University of Malaya,
50603 Kuala Lumpur, Malaysia
2Laboratoire de Chimie Physique Macromoléculaire,
ENSIC, Université de Lorraine, 1 rue Grandville, BP 20451,
54 001 Nancy Cedex, France
3Department
of Chemistry, Faculty of Science, Universiti Putra Malaysia
43400
Serdang, Selangor, Malaysia
Received: 19 April 2013/Accepted:
7 January 2014
ABSTRACT
Nanocomposite thin films of
chitosan/graphene oxide (CS/GO) and chitosan/ EDTA-GO (CS/EDTA-GO)
were prepared by environmental friendly method and the properties were
compared. The experimental results showed fine dispersion of GO and EDTA-GO in CS matrix and some interaction occur
between the filler and the CS matrix that leads to better
distribution of stress transfer. At 0.5 wt. %, both CS/GO and CS/EDTA-GO experienced maximum tensile stress by 51 and 71% compared with CS.
Moreover, the elongation at break for both nanocomposites increases and the
amount of filler increases.
Keywords: Chitosan; functionalized
graphene oxide; graphene oxide; nancomposite thin films
ABSTRAK
Filem nipis nanokomposit kitosan/grafin
oksida (CS/GO) dan kitosan/EDTA-GO (CS/EDTA-GO)
telah disediakan dalam kaedah yang mesra alam dan sifat dibincangkan.
Keputusan eksperimen menunjukkan GO dan EDTA-GO sangat
larut di dalam matriks kitosan dan ini membantu dalam pemindahan
tekanan. Pada pengisian 0.5 wt. %, kedua-dua CS/GO dan CS/EDTA-GO menunjukkan
kadar kekuatan yang paling tinggi iaitu 51 dan 71% berbanding CS.
Selain itu, pemanjangan filem bagi kedua-dua nanokomposit bertambah
seiring dengan pertambahan pengisian.
Kata kunci: Filem nipis nanokomposit; grafin oksida; grafin oksida
fungsian; kitosan
REFERENCES
Ash, B.J.,
Schadler, L.S. & Siegel, R.W. 2002. Glass transition behavior of
alumina/polymethylmethacrylate nanocomposites. Materials Letters 55(1):
83-87.
Cervera, M.,
Fernández, J., Heinämäki, M., Räsänen, S.L., Maunu, M., Karjalainen, O.M.,
Acosta, A., Iraizoz, C. & Yliruusi, J. 2004. Solid-state characterization
of chitosans derived from lobster chitin. Carbohydrate Polymers 58(4):
401-408.
Chabba, S., Matthews,
G.F. & Netravali, A.N. 2005. ‘Green’composites using cross-linked soy flour
and flax yarns. Green Chem. 7(8): 576-581.
Chang, B.Y.S.,
Huang, N.M., An’amt, M.N., Marlinda, A.R., Norazriena, Y., Muhamad, M.R.,
Harrison, I., Lim, H.N. & Chia, C.H. 2012. Facile hydrothermal preparation
of titanium dioxide decorated reduced graphene oxide nanocomposite. International
Journal of Nanomedicine 7: 3379.
Dikin, D.A.,
Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G.,
Nguyen, S.B.T. & Ruoff, R.S. 2007. Preparation and characterization of
graphene oxide paper. Nature 448(7152): 457-460.
Dong, Yanming,
Yonghong Ruan, Huiwu Wang, Yaging Zhao & Danxia Bi. 2004. Studies on glass
transition temperature of chitosan with four techniques. Journal of Applied
Polymer Science 93(4): 1553-1558.
Fang, M., Long,
J., Zhao, W., Wang, L. & Chen, G. 2010. pH-responsive chitosan-mediated
graphene dispersions. Langmuir 26(22): 16771-16774.
Giannelis, E.P.
1996. Polymer layered silicate nanocomposites. Advanced Materials 8(1):
29-35.
Granick, S.,
Kumar, S.K., Amis, E.J., Antonietti, M., Balazs, A.C., Chakraborty, A.K.,
Grest, G.S., Hawker, C., Janmey, P. & Kramer, E.J. 2003. Macromolecules at
surfaces: Research challenges and opportunities from tribology to biology. Journal
of Polymer Science Part B: Polymer Physics 41(22): 2755-2793.
Hennig, G.R.
1959. Interstitial compounds of graphite. Progress in Inorganic Chemistry 1:
125-205.
Hou, S., Su, S.,
Kasner, M.L., Shah, P., Patel, K. & Madarang, C.J. 2010. Formation of
highly stable dispersions of silane-functionalized reduced graphene oxide. Chemical
Physics Letters 501(1): 68-74.
Hummers Jr.,
W.S. & Offeman, R.E. 1958. Preparation of graphitic oxide. Journal of
the American Chemical Society 80(6): 1339-1339.
Layek, R.K.,
Samanta, S. & Nandi, A.K. 2012. Graphene sulphonic acid/chitosan nano
biocomposites with tunable mechanical and conductivity properties. Polymer 53(11):
2265-2273.
Li, D., Mueller,
M.B., Gilje, S., Kaner, R.B. & Wallace, G.G. 2008. Processable aqueous
dispersions of graphene nanosheets. Nature Nanotechnology 3(2): 101-105.
Morimune, S.,
Nishino, T. & Goto, T. 2012. Poly(vinyl alcohol)/ graphene oxide
nanocomposites prepared by a simple eco-process. Polymer Journal 44:
1056-1063.
Mukhopadhyay, P.
& Gupta, R.K. 2011. Trends and frontiers in graphene-based polymer
nanocomposites. Plastics Engineering 67: 32-42.
Pan, Yongzheng,
Tongfei Wu, Hongqian Bao & Lin Li. 2011. Green fabrication of chitosan
films reinforced with parallel aligned graphene oxide. Carbohydrate Polymers 83(4): 1908-1915.
Potts, J.R.,
Dreyer, D.R., Bielawski, C.W. & Ruoff, R.S. 2011 Graphene-based polymer nanocomposites. Polymer 52(1): 5-25.
Rana,
V.K., Pandey, A.K., Singh, R.P., Kumar, B., Mishra, S. & Ha, C.S. 2010.
Enhancement of thermal stability and phase relaxation behavior of chitosan
dissolved in aqueous l-lactic acid: Using ‘silver nanoparticles’ as nano
filler. Macromolecular Research 18(8): 713-720.
Rhim,
J-W., Hong, S-I., Park, H-M. & Ng, K-W. Perry 2006. Preparation and
characterization of chitosan-based nanocomposite films with antimicrobial
activity. Journal of Agricultural and Food Chemistry 54(16): 5814-5822.
Schadler,
L.S., Brinson, L.C. & Sawyer, W.G. 2007. Polymer nanocomposites: A small
part of the story. JOM Journal of the Minerals, Metals and Materials Society 59(3): 53-60.
Shen,
J., Li, T., Long, Y., Shi, M., Li, N. & Ye, M. 2012. One-step solid state
preparation of reduced graphene oxide. Carbon 50(6): 2134-2140.
Stankovich,
S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A.,
Piner, R.D., Nguyen, S.B.T. & Ruoff, R.S. 2006. Graphene-based composite
materials. Nature 442(7100): 282-286.
Szabó,
T., Szeri, A. & Dékány, I. 2005. Composite graphitic nanolayers prepared by
self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43(1): 87-94.
Tang,
C., Xiang, L., Su, J., Wang, K., Yang, C., Zhang, Q. & Fu, Q. 2008. Largely
improved tensile properties of chitosan film via unique synergistic reinforcing
effect of carbon nanotube and clay. The Journal of Physical Chemistry B 112(13):
3876-3881.
Veerapandian,
M., Lee, M.H., Krishnamoorthy, K. & Yun, K. 2012. Synthesis,
characterization and electrochemical properties of functionalized graphene
oxide. Carbon 50(11): 4228-4238.
Vijay
Kumar, S., Huang, N.M., Lim, H.N., Marlinda, A.R., Harrison, I. & Chia,
C.H. 2012. One-step size-controlled synthesis of functional graphene
oxide/silver nanocomposites at room temperature. Chemical Engineering
Journal 219: 217-224.
Wang,
G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H. & Yao, J. 2008. Facile
synthesis and characterization of graphene nanosheets. The Journal of
Physical Chemistry C 112(22): 8192-8195.
Wang,
S.F., Shen, L., Tong, Y.J., Chen, L., Phang, I.Y., Lim, P.Q. & Liu, T.X.
2005. Biopolymer chitosan/montmorillonite nanocomposites: Preparation and
characterization. Polymer Degradation and Stability 90(1): 123-131.
Yang, X., Tu, Y., Li,
L., Shang, S. & Tao, X. 2010. Well-dispersed chitosan/graphene oxide
nanocomposites. ACS Applied Materials & Interfaces 2(6): 1707-1713.
*Corresponding
author; email: huangnayming@um.edu.my
|