Sains Malaysiana 43(6)(2014): 903–908

 

Pressure Sensitive Organic Sensor Based on CNT-VO2(3fl) Composite

(Pengesan Organik Sensitif Tekanan Berasaskan Komposit CNT- VO2 (3fl))

 

 

ADAM KHAN1, KH. S. KARIMOV1, ZUBAIR AHMAD3*, KHAULAH SULAIMAN3,

MUTABAR SHAH2 & S.A. MOIZ4

 

1GIK Institute of Engineering Sciences & Technology, Topi 23640, KPK, Pakistan

 

2Institute of Physics and Electronics, University of Peshawar, 25120, Peshawar, KPK

Pakistan

 

3Low Dimensional Materials Research Center, Department of Physics, University of Malaya,

50603 Kuala Lumpur, Malaysia

 

4Department of Electrical Engineering, Faculty of Engineering & Islamic Arch.,

Umm-ul-Qura University, P.O Box: 5555, Makkah, Saudi Arabia

 

Received: 1 April 2013/Accepted: 31 December 2013

 

ABSTRACT

In this paper,  fabrication and investigation of organic pressure sensor based on Al/CNT-VO2 (3fl)/Cu composite is reported. The active layer of the composite was deposited by drop-casting of the blend CNT-VO2 (3fl) on a glass substrate (with prefabricated copper (Cu) electrode). The thin film of the blend consists of carbon nanotube CNT, (2.55 wt. %) and vanadium oxide (VO2 (3fl)) micropowder, (3 wt. %) in benzol (1 mL). The thickness of the composite was in the range of 20-40 μm. It was found that the fabricated sensor was sensitive to pressure and showed good repeatability. The decrease in resistance of the sensor was observed by increasing the external uniaxial pressure up to 50 kNm-2. The experimentally obtained results were compared with the simulated results and showed reasonable agreement with each other.

 

Keywords: Carbon nanotube; pressure sensor; resistance; vanadium oxide

 

 

ABSTRAK

Fabrikasi dan kajian terhadap pengesan tekanan organik berasaskan bahan komposit Al/CNT-VO2 (3fl)/Cu dilaporkan dalam kertas ini. Lapisan aktif komposit ini dihasilkan melalui proses tuangan-titisan bagi adunan CNT-VO2 (3fl) ke atas substrat kaca (dengan pra-fabrikasi elektrod kuprum (Cu). Filem nipis adunan ini mengandungi tiubnano karbon CNT (2.55 %bt) dan vanadium okisda (VO2 (3fl)) serbukmikro, (3 %bt) dalam benzol (1 mL). Ketebalan bagi filem komposit ialah dalam julat 20-40 μm. Hasil kajian mendapati bahawa pengesan ini adalah senstif terhadap tekanan dan menunjukkan kebolehulangan yang baik. Kerintangan pengesan didapati menurun apabila nilai tekanan ekapaksi luaran ditingkatkan sehingga 50 kNm-2. Perbandingan antara keputusan uji kaji dengan simulasi telah menunjukkan wujud persetujuan antara kedua-duanya.

 

Kata kunci: Pengesan tekanan; rintangan; tiubnano karbon; vanadium oksida

REFERENCES

Abdullah, S.M., Ahmad, Z., Aziz, F. & Sulaiman, K. 2012. Investigation of VOPcPhO as an acceptor material for bulk heterojunction solar cells. Organic Electronics 13: 2532- 2537.

Ahmad, Z., Sayyad, M.H., Saleem, M., Karimov, K.S. & Shah, M. 2008. Humidity dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Physica E 41: 18-22.

Ahmad, Z., Sayyad, M.H., Yaseen, M., Aw, K.C., M-Tahir, M. & Ali, M. 2011. Potential of 5,10,15,20-Tetrakis(3’,5’-di-tertbutylphenyl)porphyrinatocopper(II) for a multifunctional sensor. Sens. Actuat. B 155: 81-85.

Aziz, F., Sayyad, M., Karimov, K.S., Saleem, M., Ahmad, Z. & Khan, S.M. 2010. Characterization of vanadyl phthalocyanine based surface-type capacitive humidity sensors. Journal of Semiconductors 31: 114002.

Brabec, C.J., Dyakonov, V., Parisi, J. & Sariciftci, N.S. 2003. Organic Photovoltaics: Concepts and Realization. New York: Springer.

Cao, J., Wang, Q. & Dai, H. 2003. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Physical Review Letters 90: 157601.

Dally, J.W., Riley, W. & McConnell, K.G. 1983. Instrumentation for Engineering Measurements. New York: Wiley.

Darlinski, G., Bottger, U., Waser, R., Klauk, H., Halik, M., Zschieschang, U., Schmid, G. & Dehm, C. 2005. Mechanical force sensors using organic thin-film transistors. Journal of Applied Physics 97: 093708.

Dennler, G., Lungenschmied, C., Sariciftci, N.S., Schwodiauer, R., Bauer, S. & Reiss, H. 2005. Unusual electromechanical effects in organic semiconductor Schottky contacts: Between piezoelectricity and electrostriction. Applied Physics Letters 87: 163501.

Dimitrakopoulos, C.D. & Malenfant, P.R.L. 2002. Organic thin film transistors for large area electronics. Advanced Materials 14(2): 99-117.

Grow, R.J., Wang, Q., Cao, J., Wang, D. & Dai, H. 2005. Piezoresistance of carbon nanotubes on deformable thin-film membranes. Applied Physics Letters 86: 093104.

Guzman, G. 2000. Vanadium dioxide as infrared active coating. The Sol-Gel Portal. http://www. solgel. com/articles/ August00/thermo/Guzman. htm.

Irwin, J.D. & Nelms, R.M. 2007. Basic Engineering Circuit Analysis. New York: John Wiley & Sons.

Jung, S., Ji, T., Xie, J. & Varadan, V.K. 2007. Flexible strain sensors based on pentacene-carbon nanotube composite thin films. Presented in 4th IEEE Nanotechnology Conference.

Karimov, K.S., Mahroof-Tahir, M., Saleem, M. & Ahmad, Z. 2011. < i> I</i>–< i> V</i> characteristics of vanadium-flavonoid complexes based Schottky diodes. Physica B: Condensed Matter 406: 3011-3017.

Karimov, K.S., Saleem, M., Ahmad, Z., Farooq, M., Karieva, Z. & Khan, A. 2010. The resistive and capacitive Cu2O–PEPC composite-based displacement transducer. Physica Scripta 82: 065702.

Li, Y., Wang, W., Liao, K., Hu, C., Huang, Z. & Feng, Q. 2003. Piezoresistive effect in carbon nanotube films. Chinese Science Bulletin 48: 125-127.

Mizukami, M., Hirohata, N., Iseki, T., Ohtawara, K., Tada, T., Yagyu, S., Abe, T., Suzuki, T., Fujisaki, Y. & Inoue, Y. 2006. Flexible AM OLED panel driven by bottom-contact OTFTs. Electron Device Letters, IEEE 27: 249-251.

Regoliosi, P., Reale, A., Di Carlo, A., Orlanducci, S., Terranova, M.L. & Lugli, P. 2004. Piezoresistive behaviour of single wall carbon nanotubes. Presented in 4th IEEE Nanotechnology Conference.

Saleem, M., Karimov, K.S., Karieva, Z. & Mateen, A. 2010. Humidity sensing properties of CNT–OD–VETP nanocomposite films. Physica E: Low-dimensional Systems and Nanostructures 43: 28-32.

Schols, S. 2011. Device Architecture and Materials for Organic Light-emitting Devices: Targeting High Current Densities and Control of the Triplet Concentration. New York: Springer.

Shah, M., Ahmad, Z., Sulaiman, K., Karimov, K.S. & Sayyad, M. 2012. Carbon nanotubes’ nanocomposite in humidity sensors. Solid-State Electronics 69: 18-21.

Simpson, C.D. 1996. Industrial Electronics. New York: Prentice- Hall, Inc.

Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H. & Sakurai, T. 2005. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proceedings of the National Academy of Sciences of the United States of America 102: 12321-12325.

Stampfer, C., Helbling, T., Jungen, A. & Hierold, C. 2007. Piezoresistance of single-walled carbon nanotubes. Presented in Solid-State Sensors, Actuators and Microsystems Conference.

Stewart, M., Howell, R.S., Pires, L. & Hatalis, M.K. 2001. Polysilicon TFT technology for active matrix OLED displays. IEEE Transactions on Electron Devices 48: 845-851.

Tang, D., Ci, L., Zhou, W. & Xie, S. 2006. Effect of H< sub> 2</sub> O adsorption on the electrical transport properties of double-walled carbon nanotubes. Carbon 44: 2155-2159.

Varghese, O., Kichambre, P., Gong, D., Ong, K., Dickey, E. & Grimes, C. 2001. Gas sensing characteristics of multi-wall carbon nanotubes. Sensors and Actuators B: Chemical 81: 32-41.

Xue, W. & Cui, T. 2007. Electrical and electromechanical characteristics of nanoassembled carbon nanotube thin film resistors on flexible substrates. Sensors and Actuators A: Physical 145-146: 330-335.

*Corresponding author; email: zubairtarar@um.edu.my

 

previous