Sains Malaysiana 43(6)(2014):
903–908
Pressure
Sensitive Organic Sensor Based on CNT-VO2(3fl) Composite
(Pengesan Organik Sensitif Tekanan
Berasaskan Komposit CNT- VO2 (3fl))
ADAM KHAN1, KH. S.
KARIMOV1, ZUBAIR
AHMAD3*, KHAULAH
SULAIMAN3,
MUTABAR
SHAH2
& S.A. MOIZ4
1GIK
Institute of Engineering Sciences & Technology, Topi 23640,
KPK, Pakistan
2Institute
of Physics and Electronics, University of Peshawar, 25120, Peshawar,
KPK
Pakistan
3Low
Dimensional Materials Research Center, Department of Physics, University
of Malaya,
50603 Kuala
Lumpur, Malaysia
4Department of Electrical Engineering, Faculty
of Engineering & Islamic Arch.,
Umm-ul-Qura University, P.O Box: 5555,
Makkah, Saudi Arabia
Received: 1 April 2013/Accepted: 31
December 2013
ABSTRACT
In this paper, fabrication and investigation of organic
pressure sensor based on Al/CNT-VO2 (3fl)/Cu composite is reported.
The active layer of the composite was deposited by drop-casting
of the blend CNT-VO2
(3fl) on a glass substrate (with prefabricated copper
(Cu) electrode). The thin film of the blend consists of carbon nanotube
CNT, (2.55 wt. %) and vanadium oxide
(VO2
(3fl)) micropowder, (3 wt. %) in benzol (1 mL). The
thickness of the composite was in the range of 20-40 μm. It
was found that the fabricated sensor was sensitive to pressure and
showed good repeatability. The decrease in resistance of the sensor
was observed by increasing the external uniaxial pressure up to
50 kNm-2.
The experimentally obtained results were compared with the simulated
results and showed reasonable agreement with each other.
Keywords: Carbon nanotube; pressure
sensor; resistance; vanadium oxide
ABSTRAK
Fabrikasi dan kajian terhadap
pengesan tekanan organik berasaskan bahan komposit Al/CNT-VO2 (3fl)/Cu dilaporkan dalam kertas
ini. Lapisan aktif komposit ini dihasilkan melalui proses tuangan-titisan bagi
adunan CNT-VO2 (3fl) ke atas substrat kaca
(dengan pra-fabrikasi elektrod kuprum (Cu). Filem nipis adunan ini mengandungi
tiubnano karbon CNT (2.55
%bt) dan vanadium okisda (VO2 (3fl)) serbukmikro, (3 %bt) dalam
benzol (1 mL). Ketebalan bagi filem komposit ialah dalam julat 20-40 μm.
Hasil kajian mendapati bahawa pengesan ini adalah senstif terhadap tekanan dan
menunjukkan kebolehulangan yang baik. Kerintangan pengesan didapati menurun
apabila nilai tekanan ekapaksi luaran ditingkatkan sehingga 50 kNm-2. Perbandingan antara keputusan
uji kaji dengan simulasi telah menunjukkan wujud persetujuan antara
kedua-duanya.
Kata
kunci: Pengesan tekanan; rintangan; tiubnano karbon; vanadium
oksida
REFERENCES
Abdullah,
S.M., Ahmad, Z., Aziz, F. & Sulaiman, K. 2012. Investigation of VOPcPhO as
an acceptor material for bulk heterojunction solar cells. Organic
Electronics 13: 2532- 2537.
Ahmad, Z.,
Sayyad, M.H., Saleem, M., Karimov, K.S. & Shah, M. 2008. Humidity dependent
characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type
cell. Physica E 41: 18-22.
Ahmad, Z.,
Sayyad, M.H., Yaseen, M., Aw, K.C., M-Tahir, M. & Ali, M. 2011. Potential
of 5,10,15,20-Tetrakis(3’,5’-di-tertbutylphenyl)porphyrinatocopper(II) for a
multifunctional sensor. Sens. Actuat. B 155: 81-85.
Aziz, F.,
Sayyad, M., Karimov, K.S., Saleem, M., Ahmad, Z. & Khan, S.M. 2010.
Characterization of vanadyl phthalocyanine based surface-type capacitive
humidity sensors. Journal of Semiconductors 31: 114002.
Brabec,
C.J., Dyakonov, V., Parisi, J. & Sariciftci, N.S. 2003. Organic
Photovoltaics: Concepts and Realization. New York: Springer.
Cao, J.,
Wang, Q. & Dai, H. 2003. Electromechanical properties of metallic,
quasimetallic, and semiconducting carbon nanotubes under stretching. Physical
Review Letters 90: 157601.
Dally, J.W.,
Riley, W. & McConnell, K.G. 1983. Instrumentation for Engineering
Measurements. New York: Wiley.
Darlinski,
G., Bottger, U., Waser, R., Klauk, H., Halik, M., Zschieschang, U., Schmid, G.
& Dehm, C. 2005. Mechanical force sensors using organic thin-film
transistors. Journal of Applied Physics 97: 093708.
Dennler, G.,
Lungenschmied, C., Sariciftci, N.S., Schwodiauer, R., Bauer, S. & Reiss, H.
2005. Unusual electromechanical effects in organic semiconductor Schottky
contacts: Between piezoelectricity and electrostriction. Applied Physics
Letters 87: 163501.
Dimitrakopoulos,
C.D. & Malenfant, P.R.L. 2002. Organic thin film transistors for large area
electronics. Advanced Materials 14(2): 99-117.
Grow,
R.J., Wang, Q., Cao, J., Wang, D. & Dai, H. 2005. Piezoresistance of carbon
nanotubes on deformable thin-film membranes. Applied Physics Letters 86:
093104.
Guzman, G.
2000. Vanadium dioxide as infrared active coating. The Sol-Gel Portal.
http://www. solgel. com/articles/ August00/thermo/Guzman. htm.
Irwin, J.D.
& Nelms, R.M. 2007. Basic Engineering Circuit Analysis. New York:
John Wiley & Sons.
Jung, S.,
Ji, T., Xie, J. & Varadan, V.K. 2007. Flexible strain sensors based on
pentacene-carbon nanotube composite thin films. Presented in 4th IEEE
Nanotechnology Conference.
Karimov,
K.S., Mahroof-Tahir, M., Saleem, M. & Ahmad, Z. 2011. < i>
I</i>–< i> V</i> characteristics of vanadium-flavonoid
complexes based Schottky diodes. Physica B: Condensed Matter 406:
3011-3017.
Karimov,
K.S., Saleem, M., Ahmad, Z., Farooq, M., Karieva, Z. & Khan, A. 2010. The
resistive and capacitive Cu2O–PEPC composite-based displacement
transducer. Physica Scripta 82: 065702.
Li, Y.,
Wang, W., Liao, K., Hu, C., Huang, Z. & Feng, Q. 2003. Piezoresistive
effect in carbon nanotube films. Chinese Science Bulletin 48: 125-127.
Mizukami,
M., Hirohata, N., Iseki, T., Ohtawara, K., Tada, T., Yagyu, S., Abe, T.,
Suzuki, T., Fujisaki, Y. & Inoue, Y. 2006. Flexible AM OLED panel driven by
bottom-contact OTFTs. Electron Device Letters, IEEE 27: 249-251.
Regoliosi,
P., Reale, A., Di Carlo, A., Orlanducci, S., Terranova, M.L. & Lugli, P.
2004. Piezoresistive behaviour of single wall carbon nanotubes. Presented in 4th
IEEE Nanotechnology Conference.
Saleem, M.,
Karimov, K.S., Karieva, Z. & Mateen, A. 2010. Humidity sensing properties
of CNT–OD–VETP nanocomposite films. Physica E: Low-dimensional
Systems and Nanostructures 43: 28-32.
Schols, S.
2011. Device Architecture and Materials for Organic Light-emitting Devices:
Targeting High Current Densities and Control of the Triplet Concentration. New
York: Springer.
Shah, M.,
Ahmad, Z., Sulaiman, K., Karimov, K.S. & Sayyad, M. 2012. Carbon nanotubes’
nanocomposite in humidity sensors. Solid-State Electronics 69: 18-21.
Simpson,
C.D. 1996. Industrial Electronics. New York: Prentice- Hall, Inc.
Someya, T.,
Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H. &
Sakurai, T. 2005. Conformable, flexible, large-area networks of pressure and
thermal sensors with organic transistor active matrixes. Proceedings of the
National Academy of Sciences of the United States of America 102: 12321-12325.
Stampfer,
C., Helbling, T., Jungen, A. & Hierold, C. 2007. Piezoresistance of
single-walled carbon nanotubes. Presented in Solid-State Sensors, Actuators
and Microsystems Conference.
Stewart, M.,
Howell, R.S., Pires, L. & Hatalis, M.K. 2001. Polysilicon TFT technology
for active matrix OLED displays. IEEE Transactions on Electron Devices 48:
845-851.
Tang, D.,
Ci, L., Zhou, W. & Xie, S. 2006. Effect of H< sub> 2</sub> O
adsorption on the electrical transport properties of double-walled carbon
nanotubes. Carbon 44: 2155-2159.
Varghese, O.,
Kichambre, P., Gong, D., Ong, K., Dickey, E. & Grimes, C. 2001.
Gas sensing characteristics of multi-wall carbon nanotubes. Sensors
and Actuators B: Chemical 81: 32-41.
Xue, W. &
Cui, T. 2007. Electrical and electromechanical characteristics of nanoassembled
carbon nanotube thin film resistors on flexible substrates. Sensors and
Actuators A: Physical 145-146: 330-335.
*Corresponding author; email: zubairtarar@um.edu.my
|