Sains Malaysiana 44(2)(2015): 167–173

 

Impacts of 2009 Typhoons on Seawater Properties and Top Layer Ocean’s Structure

in the Northwest Pacific Ocean

(Kesan Ribut Taufan pada Tahun 2009 kepada Sifat-Sifat Air Laut dan Struktur Permukaan

Laut di Barat Laut Lautan Pasifik)

 

 

DAYANG SITI MARYAM MOHD HANAN*, THAN AUNG & EJRIA SALEH

Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

 

Received: 26 February 2013/Accepted: 4 August 2014

 

ABSTRACT

Passing over the ocean surface, typhoon absorbs heat from the sea water as it needs the heat as its 'fuel'. The process is via evaporation of water. Subsequently, the sea surface temperature (SST) in that area will significantly decrease. Due to strong typhoon wind water is evaporated from the surface layer of the ocean, the amount of water mass in that area is lost, but the same amount of salt will remain, causing sea surface salinity (SSS) to increase. Strong winds induced by typhoons will also cause turbulence in the water, causing entrainment, where cold deeper water is brought up to the surface layer of the ocean, which will consequently increase its SSS and change the isothermal layer and mixed layer depth (MLD). Here, isothermal layer means the ocean layer where temperature is almost constant and MLD is the depth where salinity is almost constant. This paper focuses on the effect of typhoons on SST, SSS, isothermal layer and MLD by taking 15 typhoons in the Northwest Pacific throughout 2009 typhoon season (typhoons Lupit and Ketsana are used as examples in results) into consideration. Temperature and salinity data from selected Array of Regional Geostrophic Oceanography (ARGO) floats close to the individual typhoon’s track are used in this study. The results showed that SST decreased up to 2.97°C; SSS increased up to 0.44 pss and majority of the typhoons showed deepening of isothermal layer (between 39.8 m and 4.6 m) and MLD (between 69.6 and 4.6 m) after the passage of typhoons. Passing of each individual typhoon also removed significant amount of heat energy from the affected area. The highest amount of heat of 841 MJ m-2 to the lowest of 30 MJ m-2 was calculated during the study period. For comparison purpose, an equivalent amount of electrical energy in kWh is also calculated using the amount of heat removed by the typhoons.

 

Keywords: Isothermal layer; MLD; SSS; SST; typhoon; western North Pacific Ocean

 

ABSTRAK

Semasa merentasi permukaan lautan, taufan menyerap haba daripada air laut kerana ia perlu kepanasan sebagai bahan 'bakar'. Proses ini dilakukan melalui penyejatan air. Oleh itu, suhu permukaan laut (SST) di kawasan berkenaan akan menurun. Apabila air tersejat daripada lapisan permukaan laut akibat daripada laluan taufan, jumlah jisim air di kawasan berkenaan akan berkurang, tetapi jumlah garam akan kekal sama, menyebabkan kemasinan permukaan laut (SSS) meningkat. Angin kencang dicetuskan oleh taufan juga akan menyebabkan pergolakan dalam air di kawasan itu yang menyebabkan percampuran dengan air sejuk dibawa dari kawasan lebih dalam ke lapisan permukaan lautan yang meningkatkan SSTnya dan juga mengubah lapisan suhu dan lapisan campur kedalaman (MLD). Kertas ini memfokuskan kepada kesan taufan terhadap SST, SSS, lapisan suhu dan MLD dengan mengambil 15 taufan di Barat Laut Lautan Pasifik sepanjang 2009 (taufan Lupit and Ketsana digunakan sebagai contoh dalam keputusan) untuk kajian. Data suhu dan kemasinan daripada tatasusunan oseanografi geostropik serantau (ARGO) terapung paling hampir dengan trek taufan masing-masing digunakan dalam kajian ini. Keputusan menunjukkan bahawa SST menurun sehingga 2.97°C; SSS meningkat sehingga 0.44 pss dan majoriti taufan menunjukkan pendalaman lapisan suhu (antara 39.8 dan 4.6 m) dan MLD (antara 69.6 dan 4.6 m) selepas laluan taufan. Laluan setiap taufan juga menyingkirkan jumlah kepanasan yang ketara dari kawasan terlibat. Nilai kepanasan tertinggi ialah 841 MJ m-2 dan yang terendah ialah 30 MJ m-2 semasa tempoh kajian. Bagi tujuan perbandingan, nilai setara tenaga elektrik dalam kWh juga dikira menggunakan amaun kepanasan yang disingkirkan oleh taufan.

 

Kata kunci: Barat Laut Lautan Pasifik; lapisan suhu; MLD; SSS; SST; taufan

REFERENCES

ARGO -Part of the integrated global observation strategy. 2010. http://www.argo.ucsd.edu. Accessed on 29 September 2010.

Babin, S.M., Carton, J.A., Dickey, T.D. & Wiggert, J.D. 2004. Satellite evidence of hurricane induced phytoplankton blooms in an oceanic desert. Journal of Geophysical Research 109: C03043.

Chen, C.T.A., Liu, C.T., Chuang, W.S., Yang, Y.J., Shiah, F.K., Tang, T.Y. & Chung, S.W. 2003. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea. Journal of Marine Systems 42: 65-79.

Dickey, T., Frye, D., McNeil, J., Manov, D., Nelson, N., Sigurdson, D., Jannasch, H., Siegel, D., Michaels, T. & Johnson, R. 1998. Upper-ocean temperature response to hurricane Felix as measured by the Bermuda testbed mooring. American Meteorological Society 126: 1195-1201.

Emanuel, K.A. 1986. An air-sea interaction theory for tropical cyclones, Part I: Steady state maintenance. Journal of the Atmospheric Sciences 43(6): 585-604.

Garrison, T. 2005. Oceanography: An Invitation to Marine Science. 6th ed. Belmont, CA: Thomson Brooks/Cole.

Gierach, M.M., Subrahmanyam, B. & Thoppil, P.G. 2009. Physical and biological responses to hurricane Katrina (2005) in a 1/25° nested Gulf of Mexico HYCOM. Journal of Marine Systems 78: 168-179.

Hidore, J.J. & Oliver, J.E. 1993. Climatology: An Atmospheric Science. NY: Macmillan Publishing Company.

JTWC (Joint Typhoon Warning Center). 2009. Annual Tropical Cyclone Report. http://www.usno.navy.mil. Accessed on 15 May 2010.

Lin, I., Liu, W.T., Wu, C.C., Wong, G.T.F., Hu, C., Chen, Z., Liang, W.D., Yang, Y. & Liu, K.K. 2003. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters 30(13): 1718.

MODIS. 2012. http://modis.gsfc.nasa.gov. Accessed on 16 April 2012.

Moran, J.M., Morgan, M.D. & Pauley, P.M. 1994. Meteorology: The Atmosphere and the Science of Weather. NJ: Macmillan College Publishing Company, Inc.

Muller-Karger, F.E., Vukovich, F., Leben, R., Nababan, B., Hu, C. & Myhre, D. 2000. Remote Sensing Study of Upwelling in the Northeastern Gulf of Mexico and the Effects of Hurricanes Earl and Georges, Annual Report: Year 2. U.S. Department of the Interior Minerals management Service. Gulf of Mexico OCS Region, New Orleans.

Price, J.F. 1981. Upper Ocean Response to a Hurricane. American Meteorological Society 11: 153-175.

Robertson, E.J. & Ginis, I. 1998. The upper ocean salinity response to tropical cyclones. Graduate School of Oceanography, University of Rhode Island.

Son, S., Platt, T., Fuentes-Yaco, C., Bouman, H., Devred, E., Wu, Y. & Sathyendranath, S. 2007. Possible biogeochemical response to the passage of hurricane Fabian observed by satellites. Journal of Plankton Research 29(8): 687-697.

Sorokin, Y.I. 1995. Coral Reef Ecology. Germany: Springer- Verlag Berlin Heidelberg.

Walker, N.D., Leben, R.R. & Balasubramanian, S. 2005. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophysical Research Letters (32): L18610.

Wang, X.D., Han, G.J., Qi, Y.Q. & Li, W. 2011. Impact of barrier layer on typhoon-induced sea surface cooling. Dynamics of Atmosphere and Oceans 52(3): 367-385.

Xiaoping, J., Zhong, Z. & Jing, J. 2008. Upper ocean response of the South China Sea to Typhoon Krovanh (2003). Dynamics of Atmospheres and Oceans 47: 165-175.

 

 

*Corresponding author; email: dayang.siti.maryam@gmail.com

 

previous