Sains Malaysiana 44(2)(2015): 193–201

 

Assessment of GHG Emission Reduction Potential from Source-separated Organic Waste (SOW) Management: Case Study in a Higher Educational Institution in Malaysia

(Penilaian Potensi Pengurangan Pelepasan GHG daripada Pengurusan Sumber Sisa Organik

Dipisahkan (SOW): Kajian Kes di Institusi Pendidikan Tinggi di Malaysia)

 

CHEE GUAN NG* & SUMIANI YUSOFF

Department of Civil and Environmental Engineering, Faculty of Engineering, University of Malaya

59100 Kuala Lumpur, Malaysia

 

Received: 9 September 2013/Accepted: 7 July 2014

 

ABSTRACT

In Malaysia, the greenhouse gases (GHGs) emissions reduction via composting of source-separated organic waste (SOW) in municipal solid waste (MSW) has not been assessed. Assessment of GHG emissions reduction via composting of SOW is important as environmental impacts from waste management are waste-specific and local-specific. The study presents the case study for potential carbon reduction via composting of SOW in University of Malaya (UM). In this study, a series of calculations were used to evaluate the GHG emission of different SOW management scenarios. The calculations based on IPCC calculation methods (AM0025) include GHGs emissions from landfilling, fuel consumption in transportation and SOW composting activity. The methods were applied to assess the GHG emissions from five alternative SOW management scenarios in UM. From the baseline scenario (S0), a total of 1,636.18 tCO2e was generated. In conjunction with target of 22% recycling rate, as shown in S1, 14% reduction in potential GHG emission can be achieved. The carbon reduction can be further enhanced by increasing the SOW composting capacity. The net GHG emission for S1, S2, S3 and S4 were 1,399.52, 1,161.29, 857.70 and 1,060.48 tCO2e, respectively. In general, waste diversion for composting proved a significant net GHG emission reduction as shown in S3 (47%), S4 (35%) and S2 (29%). Despite the emission due to direct on-site activity, the significant reduction in methane generation at landfill has reduced the net GHG emission. The emission source of each scenario was studied and analysed.

 

Keywords: Composting; GHG; kitchen waste; SOW; university; waste management; yard waste

 

ABSTRAK

Di Malaysia, pengurangan pelepasan gas rumah hijau (GHG) melalui pengkomposan punca dipisahkan sumber organik (SOW) dalam sisa pepejal perbandaran (MSW) belum pernah dinilai. Penilaian pengurangan pelepasan GHG melalui kompos daripada SOW adalah penting kerana kesannya terhadap alam sekitar disebabkan daripada pengurusan sisa buangan adalah khusus-sisa buangan dan khusus-tempatan. Kertas ini membentangkan kajian kes bagi potensi pengurangan karbon melalui aktiviti pengkomposan SOW di Universiti Malaya (UM). Dalam kajian ini, satu siri pengiraan digunakan untuk menilai pelepasan GHG melalui pengurusan SOW berbeza. Pengiraan berdasarkan kaedah pengiraan IPCC (AM0025) adalah termasuk pelepasan GHG dari tapak pelupusan, penggunaan bahan api kenderaan dan aktiviti pengkomposan SOW. Kaedah ini digunakan untuk menilai pelepasan GHG daripada lima alternatif senario pengurusan SOW di UM. Daripada senario asas (S0), sejumlah 1636.18 tCO2e telah dijana. Selaras dengan sasaran kadar kitar semula 22%, seperti yang ditunjukkan dalam S1, 14% potensi pengurangan dalam pelepasan GHG boleh dicapai. Pengurangan karbon boleh dipertingkatkan lagi dengan meningkatkan kapasiti pengkomposan SOW. Pelepasan bersih GHG untuk S1, S2, S3 dan S4, masing-masing adalah 1,399.52, 1,161.29, 857.70 dan 1,060.48 tCO2e. Secara umum, sisa lencongan untuk pengkomposan terbukti bersih GHG mengurangkan pelepasan ketara secara signifikan seperti ditunjukkan dalam S3 (47%), S4 (35%) dan S2 (29%). Walaupun pelepasan adalah secara langsung disebabkan aktiviti di lokasi, penurunan ketara dalam penghasilan metana di tapak pelupusan sampah telah mengurangkan pelepasan bersih GHG. Sumber pelepasan setiap senario dikaji dan dianalisis.

 

Kata kunci: GHG; pengkomposan; pengurusan sisa; sisa dapur; sisa lapangan; SOW; university

REFERENCES

Alptekin, E. & Canakci, M. 2008. Determination of the density and the viscosities of biodiesel-diesel fuel blends. Renewable Energy 33(12): 2623-2630.

Barton, J., Issaias, I. & Stentiford, E.I. 2008. Carbon-making the right choice for waste management in developing countries. Waste Management 28(4): 690-698.

Cadena, E., Colón, J., Sánchez, A., Font, X. & Artola, A. 2009. A methodology to determine gaseous emissions in a composting plant. Waste Management 29(11): 2799-2807.

Chen, T.C. & Lin, C.F. 2008. Greenhouse gases emissions from waste management practices using life cycle inventory model. Journal of Hazardous Materials 155(1): 23-31.

Chua, K., Sahid, E.J.M. & Leong, Y. 2011. Sustainable municipal solid waste management and GHG abatement in Malaysia. ST-4: Green & Energy Management. Paper #04-02. pp. 1-8.

Couth, R. & Trois, C. 2010. Carbon emissions reduction strategies in Africa from improved waste management: A review. Waste Management 30(11): 2336-2346.

Fukumoto, Y., Osada, T., Hanajima, D. & Haga, K. 2003. Patterns and quantities of NH3, N2O and CH4 emissions during swine manure composting without forced aeration-effect of compost pile scale. Bioresource Technology 89(2): 109-114.

Furuholt, E. 1995. Life cycle assessment of gasoline and diesel. Resources, Conservation and Recycling 14(3): 251-263.

Herold, A. 2003. Comparison of CO2 emission factors for fuels used in Greenhouse Gas Inventories and consequences for monitoring and reporting under the EC emissions trading scheme. ETC/ACC Technical Paper, 10.

IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Kanagawa, Japan.

Manaf, L.A., Samah, M.A.A. & Zukki, N.I.M. 2009. Municipal solid waste management in Malaysia: Practices and challenges. Waste Management 29(11): 2902-2906.

Ngoc, U.N. & Schnitzer, H. 2009. Sustainable solutions for solid waste management in Southeast Asian countries. Waste Management 29(6): 1982-1995.

Raheman, H. & Phadatare, A. 2004. Diesel engine emissions and performance from blends of karanja methyl ester and diesel. Biomass and Bioenergy 27(4): 393-397.

Rahman Mohamed, A. & Lee, K.T. 2006. Energy for sustainable development in Malaysia: Energy policy and alternative energy. Energy Policy 34(15): 2388-2397.

Rogger, C., Beaurain, F. & Schmidt, T.S. 2011. Composting projects under the clean development mechanism: Sustainable contribution to mitigate climate change. Waste Management 31(1): 138-146.

Tarmudi, Z., Abdullah, M.L. & Md Tap, A.O. 2012. An overview of municipal solid wastes generation in Malaysia. Jurnal Teknologi51(1): 1-15.

UM. 2011. The University of Malaya official website. www. um.edu.my. Accessed on 14 November 2011.

UM. 2012. Final report of zero trash campaign in University of Malaya in year 2012. University of Malaya, Kuala Lumpur.

UNFCCC. 2008. Approved baseline and monitoring methodology AM0025 'Avoided emissions from organic waste through alternative waste treatment processes'. AM0025/Version 11 Sectoral Scope: 01 and 13 EB 44. 28 November 2008.

Weitz, K.A., Thorneloe, S.A., Nishtala, S.R., Yarkosky, S. & Zannes, M. 2002. The impact of municipal solid waste management on greenhouse gas emissions in the United States. Journal of the Air & Waste Management Association 52(9): 1000-1011.

Zamri. 2011. Taman Beringin Transfer Station. In Site Visit to Taman Beringin Transfer Station. edited by Ng, C.G.

Zhang, H. & Matsuto, T. 2011. Comparison of mass balance, energy consumption and cost of composting facilities for different types of organic waste. Waste Management 31(3): 416-422.

 

 

*Corresponding author; email: guancher@hotmail.com

 

 

previous