Sains Malaysiana 44(2)(2015): 225–232
Determination of Potential
Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS
Technique
(Penentuan Kawasan Penangkapan Potensi Rastrelliger
kanagurta
Menggunakan Satelit Penderiaan Jauh dan Teknik GIS)
SUHARTONO NURDIN1,3, MUZZNEENA AHMAD MUSTAPHA1,2*, TUKIMAT LIHAN1 & MAZLAN ABD GHAFFAR1
1School of
Environmental and Natural Resource Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
2Research
Centre for Tropical Climate Change System (IKLIM), Faculty of Science and
Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
3Fisheries
and Marine Services, Government of South Sulawesi Province
90126
Makassar, Indonesia
Received:
24 April 2014/Accepted: 31 July 2014
ABSTRACT
Analysis of
relationship between sea surface temperature (SST)
and Chlorophyll-a (chl-a)
improves our understanding on the variability and productivity of the marine
environment, which is important for exploring fishery resources. Monthly level
3 and daily level 1 images of Moderate Resolution Imaging Spectroradiometer Satellite (MODIS) derived SST and chl-a from July 2002 to June 2011 around the
archipelagic waters of Spermonde Indonesia were used
to investigate the relationship between SST and chl-a and to forecast the potential fishing
ground of Rastrelliger kanagurta. The results indicated that there was positive correlation between SST and chl-a (R=0.3, p<0.05). Positive
correlation was also found between SST and chl-a with the catch of R. kanagurta (R=0.7, p<0.05). The
potential fishing grounds of R. kanagurta were
found located along the coast (at accuracy of 76.9%). This study indicated
that, with the integration of remote sensing technology, statistical modeling
and geographic information systems (GIS)
technique were able to determine the relationship between SST and chl-a and also able to
forecast aggregation of R. kanagurta. This may
contribute in decision making and reducing search hunting time and cost in
fishing activities.
Keywords: chl-a; fish forecasting;
satellite imageries; Spermonde Indonesia; SST
ABSTRAK
Analisis hubungan antara
suhu permukaan
laut (SST)
dan klorofil-a meningkatkan pemahaman kita berkaitan kepelbagaian serta produktiviti persekitaran marin kerana ia penting
untuk meneroka
sumber perikanan. Imej SST dan klorofil-a bulanan (peringkat
3) dan harian (peringkat
1) daripada Satelit
Pengimejan Spektroradiometer
Resolusi Sederhana (MODIS) dari
Julai 2002 hingga
Jun 2011 di sekitar perairan
kepulauan Spermonde Indonesia
telah digunakan untuk mengkaji hubungan antara SST
dan klorofil-a
serta meramal
kawasan potensi penangkapan bagi spesies Rastrelliger kanagurta. Keputusan menunjukkan bahawa terdapat korelasi positif antara SST
dengan klorofil-a
(R=0.3, p<0.05). Hubungan
positif juga diperoleh
antara SST dan klorofil-a dengan tangkapanR.
kanagurta (R=0.7, p<0.05).
Kawasan potensi penangkapan bagi spesiesR. Kanagurta adalah di sepanjang
perairan pantai (pada ketepatan 76.9%). Kajian ini menunjukkan
bahawa, dengan
integrasi teknologi penderiaan jauh, pemodelan statistik dan teknik sistem
maklumat geografi
(GIS) dapat
menentukan hubungan
antara SST dan chl-a dan
juga dapat
meramalkan kawasan pengumpulanR. kanagurta.
Keputusan kajian ini mampu menyumbang
dalam membuat
keputusan dan menjimatkan
masa dan kos
dalam aktiviti penangkapan ikan.
Kata kunci: Klorofil-a; imej satelit; ramalan kawasan perikanan; Spermonde Indonesia; SST
REFERENCES
Barnard, A.H., Stegmann, P.M. &
Yoder, J.A. 1997. Seasonal surface ocean variability in the South Atlantic
Bight derived from CZCS and AVHRR imagery. Continental Shelf Research 17:
1181-1206.
Bellido, J.M., Brown, A.M., Valavanis, V.D., Giráldez, A.,
Pierce, G.J., Iglesias, M. & Palialexis, A. 2008.
Identifying essential fish habitat for small pelagic species in Spanish
Mediterranean waters. Hydrobiologia 612:
171-184.
Bertrand, A., Josse, E., Bach, P., Gros, P. & Dagorn, L. 2002.
Hydrological and trophic characteristics of tuna habitat: Consequences on tuna
distribution and long line catchability. Canadian Journal of Fisheries and
Aquatic Science 59(6): 1002-1013.
Castillo, J., Barbieri, M.A. &
Gonzalez, A. 1996. Relationship between sea surface temperature, salinity, and
pelagic fish distribution off northern Chile. ICES Journal of Marine Science 53(2): 139-146.
Chandran, R.V., Jeyaram,
A., Jayaraman, V., Manoj,
S., Rajitha, K. & Mukherjee, C.K. 2009.
Prioritization of satellite-derived potential fishery grounds: An analytical
hierarchical approach-based model using spatial and non-spatial data. International
Journal of Remote Sensing 30(17): 4479-4491.
Choudhury, S.B., Jena, B., Rao, M.V., Rao, K.H., Somvanshi, V.S., Gulati, D.K. & Sahu,
S.K. 2007. Validation of integrated potential fishing zone (IPFZ) forecast
using satellite based chlorophyll and sea surface temperature along the east
coast of India. International Journal of Remote Sensing 28(12):
2683-2693.
Collette, B.B. & Nauen, C.E. 1983. FAO
Species Catalogue: Scombrids of the World. Vol.
2, Rome: FAO Fisheries Synopsis. pp. 48-49.
Georgakarakos, S. & Kitsiou, D. 2008. Mapping abundance distribution of small
pelagic species applying hydroacoustics and
Co-Kriging techniques. Hydrobiologia 612:
155-169.
Guisan, A., Edwards Jr., T.C.
& Hastie, T. 2002. Generalized linear and generalized additive models in
studies of species distributions: setting the scene. Ecological Modeling 157:
89-100.
Hendiarti, N., Suwarso, Aldrian, E., Amri, K., Andiastuti, R., Sachoemar, S.I.
& Wahyono, I.B. 2005. Seasonal variation of
pelagic fish catch around Java. Oceanography 18(4): 112-123.
Katara, I., Illian,
J., Pierce, J., Scott, B. & Wang, J. 2008. Atmospheric forcing on
chlorophyll concentration in the Mediterranean. Hydrobiologia 612: 33-48.
Ko, C.Y., Lin, R.S., Ding,
T.S., Hsieh, C.H. & Le, P.F. 2008. Identifying biodiversity hotspots by
predictive models: A case study using Taiwan’s endemic bird species. Zoological
Studies 48(3): 418-431.
KKP. 2011. Peta Keragaan Perikanan Tangkap di Wilayah
Pengelolaan Perikanan Republik Indonesia (WPP-RI) [Map of Variety of Fisheries
Resources in Fisheries Management Area of Republic of Indonesia].
Ministry of Marine and Fisheries of Republic Indonesia. Directorate
General of Fisheries, Jakarta, Indonesia.
Mustapha, A.M., Chan, Y.L. & Lihan,
T. 2010. Mapping of potential fishing grounds of Rastrelliger kanagurta(Cuvier, 1871) using satellite images. Proceeding
of Map Asia & ISG, July 2010, Kuala Lumpur, Malaysia.
Navarro,
G. & Ruiz, J. 2006. Spatial and temporal variability of phytoplankton in
the Gulf of Cadiz through remote sensing images. Deep-Sea Research II 53:
1241-1260.
Nurdin, S., Mustapha, M.A. & Lihan, T.
2014. The relationship between sea surface temperature and chlorophyll-a concentration
in fisheries aggregation area in the archipelagic waters of Spermonde using satellite images. UKM-FST Postgraduate Colloquium 2013, American
Institute of Physics Conference Proceedings, July 2013, Bangi,
Malaysia. 1571: 466-472.
Nurdin, S., Mustapha, M.A. & Lihan, T. 2013.
Spatial and temporal variability of sea surface temperature in Makassar Strait,
Indonesia. Proceedings of the 12th International UMT Annual Symposium UMTAS,
October 2013, Kuala Terengganu, Malaysia.
O'Reilly,
J.E., Maritorena, S., Mitchell, B.G.,
Siegel, D.A., Carder, K.L., Garver,
S.A., Kahru, M. & McClain, C. 1998.
Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research 103(11):
24937-24954.
Pittman,
S.J., Christensen, J.D., Caldow, C., Menza, C. & Monaco, M.E. 2007. Predictive mapping of
fish species richness across shallow-water seascapes in the Caribbean. Ecological
Modelling 204: 9-21.
Planque, B., Loots, C., Petitgas, P., LindstrØm, U. & Vaz, S. 2011.
Understanding what controls the spatial distribution of fish populations using
a multi-model approach. Fisheries Oceanography 20(1): 1-117.
Qu, T.,
Du, Y., Strachan, J., Meyers, G. & Slingo, J.
2005. Sea surface temperature and its variability in the Indonesian region. Oceanography 18(4): 50-61.
Radiarta, I.N. & Saitoh, S.I. 2008.
Satellite-derived measurements of spatial and temporal chlorophyll-a variability
in Funka Bay, southwestern Hokkaido, Japan. Estuarine,
Coastal and Shelf Science 79: 400-408.
Radiarta, I.N., Saitoh, S.I. & Miyazono, A. 2008. GIS-based multi-criteria evaluation
models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan. Aquaculture 284: 127-135.
Reese, D.C.,
O'Malley, R.T., Brodeur, R.D. &
Churnside, J.H. 2011. Epipelagic fish distributions in relation
to thermal fronts in a coastal upwelling system using high-resolution
remote-sensing technique. ICES Journal of Marine Science 68(9):
1865-1874.
Solanki,
H.U., Mankodi, P.C., Dwivedi,
R.M. & Nayak, S.R. 2008. Satellite observations
of main oceanographic processes to identify ecological associations in the
northern Arabian Sea for fishery resources exploration. Hydrobiologia 612: 269-279.
Solanki,
H.U., Mankodi, P.C., Nayak,
S.R. & Somvanshi, V.S. 2005a. Evaluation of
remote-sensing-based potential fishing zones (PFZs) forecast methodology. Continental
Shelf Research 25: 2163-2173.
Solanki,
H.U., Dwivedi, R.M., Nayak,
S.R., Naik, S.K., John, M.E. & Somvanshi, V.S. 2005b. Cover: Application of remotely
sensed closely coupled biological and physical process for marine fishery
resources exploration. International Journal of Remote Sensing 26(10):
2029-2034.
Solanki,
H.U., Dwivedi, R.M., Nayak,
S.R., Jadeja, J.V., Thakar,
D.B., Dave, H.B. & Patel, M.I. 2001. Application of ocean color monitor
chlorophyll and AVHRR SST for fishery forecast: Preliminary validation results
off Gujarat coast, northwest coast of India. Indian Journal of Marine
Science 30: 132-138.
StatSoft. 2014. Multiple Regression: How to Find Relationship between
Variables. https://www.statsoft.com/. Accessed on 07 January 2014.
Susanto, R.D., Moore II, T.R. & Marra, J.
2006. Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochemistry Geophysics Geosystems 7(5): 1-16.
Tang,
D.L., Kawamura, H., Lee, M.A. & Dien, T.V. 2003.
Seasonal and spatial distribution of chlorophyll-a concentrations and
water conditions in the Gulf of Tonkin, South China Sea. Remote Sensing of
Environment 85: 475-483.
Thomas,
A.C., Townsend, D.W. & Weatherbee, R. 2003.
Satellite-measured phytoplankton variability in the Gulf of Mine. Continental
Shelf Research 23: 971-989.
Vasconcelos, R.P., Le Pape, O., Costa, M.J. & Cabral, H.N. 2013.
Predicting estuarine use patterns of juvenile fish with generalized linear
models. Estuarine, Coastal and Shelf Science 120: 64-74.
Wajsowicz, R.C., Gordol, A.L., Ffield, A. & Susanto, R.D.
2003. Estimating transport in Makassar Strait. Deep-Sea Research II 50:
2163-2181.
Webster,
P.J., Magana, V.O., Palmer, T.N., Shukla, J., Thomas, R.A., Yanai,
M. & Yasunari, T. 1998. Monsoon: Processes,
predictability, and the prospects for prediction. Journal of Geophysical
Research 103: 14451-14510.
Yoder, J.A.,
Schollaert, S. & O'Reilly, J.E.
2002. Climatological phytoplankton chlorophyll and sea surface temperature
patterns in continental shelf and slope waters off the northeast
US Coast. Limnology and Oceanography 47: 672-682.
Zainuddin, M. 2007. Pemetaan daerah
potensial penangkapan
ikan kembung lelaki
(Rastrelliger kanagurta)
di perairan kabupaten
Bantaeng, Sulawesi Selatan (Mapping of potential fishing
grounds of Rastrelliger kanagurta
in Bantaeng waters, South Sulawesi).
Jurnal Sains dan Teknologi 7(2): 57-64.
*Corresponding
author; email: muzz@ukm.edu.my
|