Sains Malaysiana 47(11)(2018): 28992905
http://dx.doi.org/10.17576/jsm-2018-4711-33
Homotopy Decomposition Method
for Solving Higher-Order Time- Fractional Diffusion Equation via
Modified Beta Derivative
(Kaedah Penguraian Homotopi bagi Menyelesaikan Persamaan Resapan Pecahan-Masa Peringkat Tinggi menerusi Terbitan Terubah Suai Beta)
SALAH ABUASAD1
& ISHAK HASHIM2*
1Faculty of Sciences,
King Faisal University, 31982 Hofuf,
Al-Hasa, Saudi Arabia
2School of Mathematical
Sciences, Faculty Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 21 February
2018/Accepted: 2 July 2018
ABSTRACT
In this paper, the homotopy decomposition method with a modified definition of
beta fractional derivative is adopted to find approximate solutions
of higher-dimensional time-fractional diffusion equations. To
apply this method, we find the modified beta integral for both
sides of a fractional differential equation first,
then using homotopy decomposition method
we can obtain the solution of the integral equation in a series
form. We compare the solutions obtained by the proposed method
with the exact solutions obtained using fractional variational
homotopy perturbation iteration method
via modified Riemann-Liouville derivative.
The comparison shows that the results are in a good agreement.
Keywords: Beta derivative;
fractional differential equation; fractional diffusion equation;
homotopy decomposition method
ABSTRAK
Dalam kertas ini,
kaedah penguraian homotopi dengan takrif terbitan pecahan beta terubah suai diadaptasi untuk mencari penyelesaian
penghampiran bagi
persamaan resapan pecahan-masa peringkat tinggi. Untuk menggunakan
kaedah ini,
kami dapatkan dahulu kamiran beta terubah suai bagi kedua-dua
belah persamaan
terbitan pecahan itu, kemudian dengan
menggunakan kaedah
penguraian homotopi kami boleh dapatkan penyelesaian bagi persamaan kamiran itu dalam bentuk
siri. Kami
bandingkan penyelesaian yang diperoleh dengan penyelesaian tepat yang diperoleh menerusi kaedah usikan berlelar
homotopi ubahan
dengan terbitan Riemann-Liouville. Perbandingan menunjukkan kedua-dua
kaedah memberikan
penyelesaian yang sangat hampir.
Kata kunci: Kaedah
penguraian homotopi;
persamaan resapan pecahan; persamaan terbitan pecahan; terbitan beta
REFERENCES
Abdullah, F.A.
2013. Simulations of Hirschsprungs
Disease using fractional differential equations. Sains
Malaysiana 42(5): 661-666.
Atangana,
A. 2015.
Derivative with a New Parameter: Theory, Methods and Applications.
London: Elsevier.
Atangana, A. & Belhaouari, S. 2013. Solving partial differential
equation with space- and time-fractional derivatives via homotopy decomposition method. Mathematical Problems
in Engineering 2013: Article ID. 318590.
Atangana,
A. & Secer, A. 2013. The time-fractional coupled- Korteweg-de
Vries equations. Abstract and Applied Analysis 2013:
Article ID. 947986.
Atangana,
A. & Botha, J. 2012. Analytical solution of the groundwater flow equation
obtained via homotopy decomposition
method. Journal of Earth Science & Climatic Change 3:
1000115.
Çetinkaya,
A. & Kıymaz, O. 2013. The solution of the time-fractional diffusion equation by the generalized
differential transform method. Mathematical
and Computer Modelling 57: 2349-2354.
Das, S. 2009a.
Analytical solution of a fractional diffusion equation by variational iteration method. Computers & Mathematics
with Applications 57: 483-487.
Das, S. 2009b.
A note on fractional diffusion equations. Chaos, Solitons
& Fractals 42: 2074-2079.
Gorenflo, R., Mainardi, F. Moretti, D. & Paradisi,
P. 2002. Time fractional diffusion: A discrete random walk approach.
Nonlinear Dynamics 29: 129-143.
Guo,
S.M.L. & Li, Y. 2013. Fractional variational homotopy perturbation
iteration method and its application to a fractional diffusion
equation. Applied Mathematics and Computation 219:
5909-5917.
He,
J.H. 1999.
Homotopy
perturbation technique. Computer Methods
in Applied Mechanics and Engineering 178: 257- 262.
Huang,
F. & Liu, F. 2005. The time fractional diffusion equation
and the advection-dispersion equation. The ANZIAM Journal
46: 317-330.
Jumarie, G. 2006. Modified
Riemann-Liouville derivative and fractional
Taylor series of nondifferentiable functions
further results. Computers & Mathematics with Applications
51: 1367-1376.
Kilbas,
A.A., Srivastava, H.M. & Trujillo, J.J. 2006. Theory and Applications of Fractional Differential Equations.
Volume 204. New York: Elsevier.
Li, X., Xu, M.
& Jiang, X. 2009.
Homotopy
perturbation method to time-fractional diffusion equation with
a moving boundary condition. Applied Mathematics and
Computation 208: 434-439.
Lin, Y. & Xu, C. 2007. Finite difference/spectral approximations
for the time-fractional diffusion equation. Journal
of Computational Physics 225: 1533-1552.
Miller,
K.S. & Ross, B. 1993. An Introduction to
the Fractional Calculus and Fractional Differential Equations.
New York: Wiley-Interscience.
Nigmatullin, R. 1986. The realization of the generalized transfer equation in a medium with
fractal geometry. Physica
Status Solidi (b) 133: 425-430.
Nigmatullin, R. 1984. An Introduction to the Fractional Calculus and Fractional Differential
Equations. Wiley-Interscience.
Physica Status Solidi (b)
123: 739-745.
Oldham,
K. & Spanier, J. 1974. The Fractional Calculus Theory and Applications of Differentiation
and Integration to Arbitrary Order. Volume 111. New York: Academic Press.
Podlubny, I. 1999. Fractional Differential Equations, Mathematics in Science and Engineering.
Volume 198. San Diego, CA: Academic Press.
Ray,
S.S. & Bera, R. 2006. Analytical solution of a fractional diffusion equation by Adomian decomposition method. Applied Mathematics
and Computation 174: 329-336.
Samko,
S.G., Kilbas, A.A. & Marichev,
O.I. 1993.
Fractional Integrals and Derivatives: Theory and Applications.
Gordon and Breach Science Publishers.
*Corresponding author; email: ishak_h@ukm.edu.my