Sains Malaysiana 49(10)(2020):
2359-2371
http://dx.doi.org/10.17576/jsm-2020-4910-03
Current
and Future Intensity-Duration-Frequency Curves based on Weighted
Ensemble GCMs and Temporal Disaggregation
(Lengkung Keamatan-Tempoh-Frekuensi Semasa dan Masa Hadapan berdasarkan Pemberatan GCM Ensembel dan Pengasingan Temporal)
NURADDEEN
MUKHTAR NASIDI1,3*, AIMRUN WAYAYOK1,2, AHMAD FIKRI
ABDULLAH1,2 & MUHAMAD SAUFI MOHD KASSIM1,2
1Department of Biological and Agricultural
Engineering, Faculty of Engineering, Universiti Putra
Malaysia, 43300 UPM Serdang, Selangor Darul Ehsan, Malaysia
2SMART Farming Technology Research Center, Faculty
of Engineering, Universiti Putra Malaysia, 43300 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department of Agricultural and Environmental
Engineering, Bayero University, Kano, P.M.B. 3011, Gwarzo Road, Kano – Nigeria
Received: 10 March
2020/Accepted: 9 May 2020
ABSTRACT
Hydrological events are expected
to increase in both magnitude and frequency in tropical areas due to climate
variability. The Intensity – Duration – Frequency (IDF) curves are important
means of evaluating the efficiency of irrigation and drainage systems. The
necessity to update IDF curves arises from the need to gain better
understanding of the impacts of climate change. This study explores an approach
based on weighted Global Circulation Models (GCMs) and temporal disaggregation
method to develop future IDFs under Representative Concentration Pathways (RCP)
emission scenarios. The work consists of 20 ensemble GCMs, three RCPs (2.6,
4.5, and 8.5) and two projection periods (2050s and 2080s). The study compared
three statistical distributions and selected Generalized Extreme Value (GEV)
being the best fitting distribution with baseline rainfall series and therefore
used for IDF projection. The result obtained shows that, the highest rainfall
intensities of 19.32, 35.07 and 39.12 mm/hr occurred under 2-, 5-, and 20 years
return periods, respectively. IDFs from the multi-model ensemble GCMs have
shown increasing intensity in the future for all the return periods. This study
indicated that the method could produce promising results which can be extended
to other catchments.
Keywords: Cameron Highlands;
climate change; flooding; HYETOS; soil erosion
ABSTRAK
Kejadian hidrologi dijangka meningkat pada magnitud dan kekerapan di kawasan tropika kerana perubahan iklim. Lengkung Keamatan-Tempoh-Frekuensi (IDF) ialah kaedah penting untuk menilai kecekapan sistem pengairan dan saliran. Keperluan untuk mengemas kini lengkung IDF timbul daripada keperluan untuk mendapatkan pemahaman yang lebih baik mengenai kesan perubahan iklim. Kajian ini meneliti pendekatan berdasarkan pemberatan Model Peredaran Global (GCM) dan kaedah tidak pengagregatan secara temporal untuk memajukan IDF masa hadapan di bawah senario pelepasanLaluan Konsentrasi Perwakilan (RCP). Karya ini terdiri daripada 20 GCM ensembel, tiga RCP
(2.6, 4.5 dan 8.5) dan dua tempoh unjuran (2050-an dan 2080-an). Kajian ini membandingkan tiga taburan statistik dan Nilai Ekstrim Umum (GEV) terpilih sebagai taburan yang paling sesuai dengan garis tapak siri curahan hujan. Oleh itu, ia digunakan untuk unjuran IDF. Hasil yang diperoleh menunjukkan bahawa keamatan curahan hujan tertinggi ialah 19.32, 35.07 dan 39.12
mm/jam dan masing-masing berlaku dalam jangka masa pengembalian 2-, 5- dan 20 tahun. IDF daripada multi-model GCM ensembel telah menunjukkan peningkatan keamatan pada masa hadapan untuk semua tempoh pengembalian. Kajian ini menunjukkan bahawa kaedah tersebut dapat menghasilkan keputusan yang menggalakkan serta dapat diaplikasikan ke kawasan tadahan curahan hujan yang lain.
Kata kunci: Banjir; hakisan tanah; HYETOS; perubahan iklim; Tanah Tinggi Cameron
REFERENCES
Abdullah, A.F., Aimrun,
W., Nasidi, N.M., Hazari, K., Mohd Sidek, L. & Selamat, Z. 2019. Modelling
erosion and landslides induced by faming activities at hilly areas, Cameron
Highlands, Malaysia. Jurnal Teknologi 81(6): 195-204.
Amanambu, A.C., Li, L.,
Egbinola, C.N., Obarein, O.A., Mupenzi, C. & Chen, D. 2019. Spatio-temporal
variation in rainfall-runoff erosivity due to climate change in the lower Niger
Basin, West Africa. CATENA 172: 324-334.
Anandhi, A., Frei, A.,
Pierson, D.C., Schneiderman, E.M., Zion, M.S., Lounsbury, D. & Matonse,
A.H. 2011. Examination of change factor methodologies for climate change impact
assessment. Water Resources Research 47(3): 1-10.
Araji, H.A., Wayayok, A., Bavani, A.M., Amiri, E., Abdullah, A.F.,
Daneshian, J. & Teh, C.B.S. 2018. Impacts of climate change on soybean production under
different treatments of field experiments considering the uncertainty of
general circulation models. Agricultural Water Management 205(2018):
63-71.
Choi, J., Lee, O., Jang,
J., Jang, S. & Kim, S. 2019. Future intensity-depth-frequency curves
estimation in korea under representative concentration pathway scenarios of
Fifth assessment report using scale-invariance method. International Journal
of Climatology 39(2): 887-900.
Chow, V.T., Maidment, D.R.
& Mays, L.W. 1988. Applied hydrology. In McGraw-Hill Series in Water
Resources and Environmental Engineering. New York: McGraw-Hill Book
Company.
D-iya, S.G., Gasim, M.B.,
Toriman, M.E. & Abdullahi, M.G. 2014. Floods in Malaysia: Historical
reviews, causes, effects and mtigations approach. International Journal of
Interdisciplinary Research and Innovations 2(4): 59-65.
Ehmele, F. & Kunz, M.
2019. Flood-related extreme precipitation in southwestern Germany: Development
of a two-dimensional stochastic precipitation model. Hydrology and Earth
System Sciences 23(2): 1083-1102.
Gasim, M.B., Mokhtar, M.,
Surif, S., Toriman, M.E., Abd. Rahim, S. & Lun, P.I. 2012. Analysis of
thirty years recurrent floods of the Pahang River, Malaysia. Asian Journal
of Earth Sciences 5(1): 25-35.
Gericke, A., Kiesel, J.,
Deumlich, D. & Venohr, M. 2019. Recent and future changes in rainfall
erosivity and implications for the soil erosion risk in Brandenburg, NE
Germany. Water 11(5): 1-18.
Hanaish, I.S., Ibrahim, K.
& Jemain, A.A. 2011. Daily rainfall disaggregation using HYETOS model for
Peninsular Malaysia. In 5th International Conference on Applied Mathematics,
Simulation and Modelling. Wisconsin: World Scientific and Engineering
Academy and Society (WSEAS). pp. 46-50.
Hosking, J.R.M. 1990.
L-Moments: Analysis and estimation of distributions using linear combinations
of order statistics. Journal of Royal Statistical Society. Series B
(Methodological) 52(1): 105-124.
Hosking, J.R.M. &
Wallis, J.R. 1997. Regional Frequency Analysis: An Approach Based on
L-Moments. Cambridge: Cambridge University Press.
IPCC. 2013. Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T.F., Qin, D.,
Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y.,
Bex, V. & Midgley, P.M. Cambridge: Cambridge University Press.
IPCC. 2014. Climate
Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva:
The Intergovernmental Panel on Climate Change.
Koutsoyiannis, D. &
Onof, C. 2001. Rainfall disaggregation using adjusting procedures on a Poisson
cluster model. Journal of Hydrology 246(1-4): 109-122.
Kristvik, E., Johannessen,
B.G. & Muthanna, T. 2019. Temporal downscaling of IDF curves applied to
future performance of local stormwater measures. Sustainability 11(5):
1-24.
Liew, S.C., Raghavan, S.V.
& Liong, S.Y. 2014. How to construct future IDF curves, under changing
climate, for sites with scarce rainfall records? Hydrological Processes 28(8): 3276-3287.
Mandal, S., Breach, P.A.
& Simonovic, S.P. 2016. Uncertainty in precipitation projection under
changing climate conditions: A regional case study. American Journal of
Climate Change 5(1): 116-132.
Mondal, A., Khare, D.,
Kundu, S., Mukherjee, S., Mukhopadhyay, A. & Mondal, S. 2017. Uncertainty
of soil erosion modelling using open source high resolution and aggregated
DEMs. Geoscience Frontiers 8(3): 425-436.
Nkunzimana, A., Bi, S.,
Jiang, T., Wu, W. & Abro, M.I. 2019. Spatiotemporal variation of rainfall
and occurrence of extreme events over burundi during 1960 to 2010. Arabian
Journal of Geosciences 12(176): 1-22.
Perkins, S.E., Alexander,
L.V. & Nairn, J.R. 2012. Increasing frequency, intensity and duration of
observed global heatwaves and warm spells. Geophysical Research Letters 39(20): 1-5.
Razali, A., Syed Ismail,
S.N., Awang, S., Praveena, S.M. & Zainal Abidin, E. 2018. Land use change
in highland area and its impact on river water quality: A review of case
studies in Malaysia. Ecological Processes 7(19): 1-17.
Sardari, M.R.A.,
Bazrafshan, O., Panagopoulos, T. & Sardooi, E.R. 2019. Modeling the impact
of climate change and land use change scenarios on soil erosion at the Minab
Dam watershed. Sustainability 11(2): 1-21.
Shrestha, D.P. &
Jetten, V.G. 2018. Modelling erosion on a daily basis, an adaptation of the MMF
approach. International Journal of Applied Earth Observation and
Geoinformation 64: 117-131.
Shrestha, A., Babel, M.S.,
Weesakul, S. & Vojinovic, Z. 2017. Developing Intensity-Duration-Frequency
(IDF) curves under climate change uncertainty: The case of Bangkok, Thailand. Water 9(2): 1-22.
Singh, G. & Rabindra,
K.P. 2017. Grid-cell based assessment of soil erosion potential for
identification of critical erosion prone areas using USLE, GIS and remote
sensing: A case study in the Kapgari watershed, India. International Soil
and Water Conservation Research 5(3): 202-211.
Song, X., Zhang, J., Zou,
X., Zhang, C., AghaKouchak, A. & Kong, F. 2019. Changes in precipitation
extremes in the beijing metropolitan area during 1960-2012. Atmospheric
Research 222(1): 134-153.
Zhiying, L. & Fang, H.
2016. Impacts of climate change on water erosion: A Review. Earth-Science
Reviews 163: 94-117.
*Corresponding author; email:
nuramnasidi@gmail.com
|