Sains Malaysiana 49(10)(2020): 2359-2371

http://dx.doi.org/10.17576/jsm-2020-4910-03

 

Current and Future Intensity-Duration-Frequency Curves based on Weighted Ensemble GCMs and Temporal Disaggregation

(Lengkung Keamatan-Tempoh-Frekuensi Semasa dan Masa Hadapan berdasarkan Pemberatan GCM Ensembel dan Pengasingan Temporal)

 

NURADDEEN MUKHTAR NASIDI1,3*, AIMRUN WAYAYOK1,2, AHMAD FIKRI ABDULLAH1,2 & MUHAMAD SAUFI MOHD KASSIM1,2

 

1Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43300 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2SMART Farming Technology Research Center, Faculty of Engineering, Universiti Putra Malaysia, 43300 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Agricultural and Environmental Engineering, Bayero University, Kano, P.M.B. 3011, Gwarzo Road, Kano – Nigeria

 

Received: 10 March 2020/Accepted: 9 May 2020

 

ABSTRACT

Hydrological events are expected to increase in both magnitude and frequency in tropical areas due to climate variability. The Intensity – Duration – Frequency (IDF) curves are important means of evaluating the efficiency of irrigation and drainage systems. The necessity to update IDF curves arises from the need to gain better understanding of the impacts of climate change. This study explores an approach based on weighted Global Circulation Models (GCMs) and temporal disaggregation method to develop future IDFs under Representative Concentration Pathways (RCP) emission scenarios. The work consists of 20 ensemble GCMs, three RCPs (2.6, 4.5, and 8.5) and two projection periods (2050s and 2080s). The study compared three statistical distributions and selected Generalized Extreme Value (GEV) being the best fitting distribution with baseline rainfall series and therefore used for IDF projection. The result obtained shows that, the highest rainfall intensities of 19.32, 35.07 and 39.12 mm/hr occurred under 2-, 5-, and 20 years return periods, respectively. IDFs from the multi-model ensemble GCMs have shown increasing intensity in the future for all the return periods. This study indicated that the method could produce promising results which can be extended to other catchments.

 

Keywords: Cameron Highlands; climate change; flooding; HYETOS; soil erosion

 

ABSTRAK

Kejadian hidrologi dijangka meningkat pada magnitud dan kekerapan di kawasan tropika kerana perubahan iklim. Lengkung Keamatan-Tempoh-Frekuensi (IDF) ialah kaedah penting untuk menilai kecekapan sistem pengairan dan saliran. Keperluan untuk mengemas kini lengkung IDF timbul daripada keperluan untuk mendapatkan pemahaman yang lebih baik mengenai kesan perubahan iklim. Kajian ini meneliti pendekatan berdasarkan pemberatan Model Peredaran Global (GCM) dan kaedah tidak pengagregatan secara temporal untuk memajukan IDF masa hadapan di bawah senario pelepasanLaluan Konsentrasi Perwakilan (RCP). Karya ini terdiri daripada 20 GCM ensembel, tiga RCP (2.6, 4.5 dan 8.5) dan dua tempoh unjuran (2050-an dan 2080-an). Kajian ini membandingkan tiga taburan statistik dan Nilai Ekstrim Umum (GEV) terpilih sebagai taburan yang paling sesuai dengan garis tapak siri curahan hujan. Oleh itu, ia digunakan untuk unjuran IDF. Hasil yang diperoleh menunjukkan bahawa keamatan curahan hujan tertinggi ialah 19.32, 35.07 dan 39.12 mm/jam dan masing-masing berlaku dalam jangka masa pengembalian 2-, 5- dan 20 tahun. IDF daripada multi-model GCM ensembel telah menunjukkan peningkatan keamatan pada masa hadapan untuk semua tempoh pengembalian. Kajian ini menunjukkan bahawa kaedah tersebut dapat menghasilkan keputusan yang menggalakkan serta dapat diaplikasikan ke kawasan tadahan curahan hujan yang lain.

 

Kata kunci: Banjir; hakisan tanah; HYETOS; perubahan iklim; Tanah Tinggi Cameron

 

REFERENCES

Abdullah, A.F., Aimrun, W., Nasidi, N.M., Hazari, K., Mohd Sidek, L. & Selamat, Z. 2019. Modelling erosion and landslides induced by faming activities at hilly areas, Cameron Highlands, Malaysia. Jurnal Teknologi 81(6): 195-204.

Amanambu, A.C., Li, L., Egbinola, C.N., Obarein, O.A., Mupenzi, C. & Chen, D. 2019. Spatio-temporal variation in rainfall-runoff erosivity due to climate change in the lower Niger Basin, West Africa. CATENA 172: 324-334.

Anandhi, A., Frei, A., Pierson, D.C., Schneiderman, E.M., Zion, M.S., Lounsbury, D. & Matonse, A.H. 2011. Examination of change factor methodologies for climate change impact assessment. Water Resources Research 47(3): 1-10.

Araji, H.A., Wayayok, A., Bavani, A.M., Amiri, E., Abdullah, A.F., Daneshian, J. & Teh, C.B.S. 2018. Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agricultural Water Management 205(2018): 63-71.

Choi, J., Lee, O., Jang, J., Jang, S. & Kim, S. 2019. Future intensity-depth-frequency curves estimation in korea under representative concentration pathway scenarios of Fifth assessment report using scale-invariance method. International Journal of Climatology 39(2): 887-900.

Chow, V.T., Maidment, D.R. & Mays, L.W. 1988. Applied hydrology. In McGraw-Hill Series in Water Resources and Environmental Engineering. New York: McGraw-Hill Book Company.

D-iya, S.G., Gasim, M.B., Toriman, M.E. & Abdullahi, M.G. 2014. Floods in Malaysia: Historical reviews, causes, effects and mtigations approach. International Journal of Interdisciplinary Research and Innovations 2(4): 59-65.

Ehmele, F. & Kunz, M. 2019. Flood-related extreme precipitation in southwestern Germany: Development of a two-dimensional stochastic precipitation model. Hydrology and Earth System Sciences 23(2): 1083-1102.

Gasim, M.B., Mokhtar, M., Surif, S., Toriman, M.E., Abd. Rahim, S. & Lun, P.I. 2012. Analysis of thirty years recurrent floods of the Pahang River, Malaysia. Asian Journal of Earth Sciences 5(1): 25-35.

Gericke, A., Kiesel, J., Deumlich, D. & Venohr, M. 2019. Recent and future changes in rainfall erosivity and implications for the soil erosion risk in Brandenburg, NE Germany. Water 11(5): 1-18.

Hanaish, I.S., Ibrahim, K. & Jemain, A.A. 2011. Daily rainfall disaggregation using HYETOS model for Peninsular Malaysia. In 5th International Conference on Applied Mathematics, Simulation and Modelling. Wisconsin: World Scientific and Engineering Academy and Society (WSEAS). pp. 46-50.

Hosking, J.R.M. 1990. L-Moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of Royal Statistical Society. Series B (Methodological) 52(1): 105-124.

Hosking, J.R.M. & Wallis, J.R. 1997. Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge: Cambridge University Press.

IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. Cambridge: Cambridge University Press.

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: The Intergovernmental Panel on Climate Change.

Koutsoyiannis, D. & Onof, C. 2001. Rainfall disaggregation using adjusting procedures on a Poisson cluster model. Journal of Hydrology 246(1-4): 109-122.

Kristvik, E., Johannessen, B.G. & Muthanna, T. 2019. Temporal downscaling of IDF curves applied to future performance of local stormwater measures. Sustainability 11(5): 1-24.

Liew, S.C., Raghavan, S.V. & Liong, S.Y. 2014. How to construct future IDF curves, under changing climate, for sites with scarce rainfall records? Hydrological Processes 28(8): 3276-3287.

Mandal, S., Breach, P.A. & Simonovic, S.P. 2016. Uncertainty in precipitation projection under changing climate conditions: A regional case study. American Journal of Climate Change 5(1): 116-132.

Mondal, A., Khare, D., Kundu, S., Mukherjee, S., Mukhopadhyay, A. & Mondal, S. 2017. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs. Geoscience Frontiers 8(3): 425-436.

Nkunzimana, A., Bi, S., Jiang, T., Wu, W. & Abro, M.I. 2019. Spatiotemporal variation of rainfall and occurrence of extreme events over burundi during 1960 to 2010. Arabian Journal of Geosciences 12(176): 1-22.

Perkins, S.E., Alexander, L.V. & Nairn, J.R. 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters 39(20): 1-5.

Razali, A., Syed Ismail, S.N., Awang, S., Praveena, S.M. & Zainal Abidin, E. 2018. Land use change in highland area and its impact on river water quality: A review of case studies in Malaysia. Ecological Processes 7(19): 1-17.

Sardari, M.R.A., Bazrafshan, O., Panagopoulos, T. & Sardooi, E.R. 2019. Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam watershed. Sustainability 11(2): 1-21.

Shrestha, D.P. & Jetten, V.G. 2018. Modelling erosion on a daily basis, an adaptation of the MMF approach. International Journal of Applied Earth Observation and Geoinformation 64: 117-131.

Shrestha, A., Babel, M.S., Weesakul, S. & Vojinovic, Z. 2017. Developing Intensity-Duration-Frequency (IDF) curves under climate change uncertainty: The case of Bangkok, Thailand. Water 9(2): 1-22.

Singh, G. & Rabindra, K.P. 2017. Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed, India. International Soil and Water Conservation Research 5(3): 202-211.

Song, X., Zhang, J., Zou, X., Zhang, C., AghaKouchak, A. & Kong, F. 2019. Changes in precipitation extremes in the beijing metropolitan area during 1960-2012. Atmospheric Research 222(1): 134-153.

Zhiying, L. & Fang, H. 2016. Impacts of climate change on water erosion: A Review. Earth-Science Reviews 163: 94-117.

 

*Corresponding author; email: nuramnasidi@gmail.com

   

 

 

previous