Sains Malaysiana 49(10)(2020): 2539-2545
http://dx.doi.org/10.17576/jsm-2020-4910-19
Temperature Performance of a
Portable Solar Greenhouse Dryer with Various Collector Design
(Prestasi Suhu Pengering Rumah Hijau Suria Mudah Alih dengan Pelbagai Reka Bentuk Pengumpulan)
NURUL
AIMAN MHD SAFRI1, ZALITA ZAINUDDIN1*, MOHD SYAHRIMAN MOHD
AZMI2, AHMAD FUDHOLI3, IDRIS ZULKIFLE1 &
MOHD HAFIDZ RUSLAN3
1Department of Applied Physics, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Physics, Faculty of Science and
Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim,
Perak Darul Ridzuan, Malaysia
3Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
21 February 2020/Accepted: 24 April 2020
ABSTRACT
The two main components of a
solar greenhouse drying system are the solar collector and drying chamber. Solar greenhouse utilized
thermal energy to increase the temperature in the drying chamber at an optimum
rate for drying purposes with the use of solar collectors. In this study the
performance of a self-built portable solar greenhouse dryer using different
types of solar collectors were evaluated, which are flat plate with insulator,
V-groove with insulator, flat plate and V-groove with insulator and flat plate
and V-groove without insulator. The experiment was conducted indoor, in the solar simulator laboratory using halogen lamps. Two parameters were varied,
which are the mass flow rates at 0.011, 0.021, 0.030, and 0.041 kg/s, and the
light intensities at 625, 708, 860, and 988 W/m2. The results showed that for all types of collector, the combination
of the maximum solar radiation intensity of 988 W/m2 and the lowest
mass flow rate of 0.011 kg/s produced the highest average maximum collector
outlet temperature. Whereas, the highest efficiency is at the highest mass flow
rate of 0.041 kg/s and the minimum solar radiation intensity of 625 W/m2.
In this study it was found that the solar collector that has the best
performance of heat transfer is the combination of flat-plate and V-groove
collector with an insulator under the V-groove while the best collector design
for drying purpose is the combination of flat-plate and V-groove collector
without insulator.
Keywords: Efficiency; performance;
solar greenhouse dryer; V-groove collector
ABSTRAK
Dua komponen utama bagi sistem pengering rumah hijau suria adalah pengumpul suria dan kebuk pengeringan. Rumah hijau suria menggunakan tenaga terma untuk meningkatkan suhu di dalam kebuk pengeringan pada kadar yang optimum untuk tujuan pengeringan dengan penggunaan pengumpul suria. Dalam kajian ini, prestasi pengering rumah hijau suria mudah alih swabina menggunakan pengumpul suria berbeza jenis telah dinilai iaitu, plat-datar dengan penebat, lekuk-V dengan penebat, gabungan plat-datar dan lekuk-V dengan penebat dan gabungan plat-datar dan lekuk-V tanpa penebat. Uji kaji telah dijalankan di dalam makmal simulator suria yang menggunakan lampu halogen. Dua parameter telah diubah iaitu, kadar aliran jisim pada 0.011, 0.021, 0.030 dan 0.041 kg/s dan keamatan cahaya pada 625, 708, 860 dan 988 W/m2. Keputusan kajian menunjukkan bahawa gabungan keamatan sinar suria maksimum bagi 988 W/m2 dan kadar aliran jisim paling rendah bagi 0.011 kg/s telah mencapai suhu keluar pengumpul dengan purata maksimum yang paling tinggi untuk semua jenis pengumpul. Manakala kecekapan tertinggi adalah pada kadar aliran jisim tertinggi iaitu pada 0.041 kg/s dan keamatan sinar suria minimum pada 625 W/m2. Kajian ini juga mendapati bahawa pengumpul suria dengan prestasi pemindahan haba terbaik adalah gabungan plat-datar dan lekuk-V dengan penebat di bawah lekuk-V manakala reka bentuk pengumpul suria terbaik bagi tujuan pengeringan adalah gabungan plat-datar dan lekuk-V tanpa penebat.
Kata kunci: Kecekapan; pengering rumah hijau suria; pengumpul berlekuk-V; prestasi
REFERENCES
Chauhan, P.S. & Kumar, A. 2016.
Performance analysis of greenhouse dryer by using insulated north-wall under
natural convection mode. Energy Reports 2: 107-116.
El-sebaii, A.A. & Shalaby, S.M. 2012. Solar drying
of agricultural products: A review. Renewable and Sustainable Energy Reviews 16(1): 37-43.
Essalhi, H., Tadili, R. &
Bargach, M.N. 2017. Conception of a solar air collector for an indirect solar
dryer. Pear drying test. Energy Procedia 141: 29-33.
Evangelisti, L., Vollaro, R.D.L.
& Asdrubali, F. 2019. Latest advances on solar thermal collectors: A
comprehensive review. Renewable and Sustainable Energy Reviews 114:
109318.
Fudholi, A. & Sopian, K. 2019. A
review of solar air flat plate collector for drying application. Renewable
and Sustainable Energy Reviews 102: 333-345.
Fudholi, A., Othman, M.Y., Ruslan,
M.H. & Sopian, K. 2013. Drying of Malaysian Capsicum annuum L. (red chili) dried by open and solar drying. International
Journal of Photoenergy 2013: Article ID. 167895.
Hassanien, R.H.E., Li, M. & Lin,
W.D. 2016. Advanced applications of solar energy in agricultural greenhouses. Renewable
and Sustainable Energy Reviews 54: 989-1001.
Othman, M.Y.H., Fudholi, A., Sopian,
K., Ruslan, M.H. & Yahya, M. 2012. Analisis kinetik pengeringan rumpai laut Gracilaria changii menggunakan sistem
pengering suria. Sains Malaysiana 41(2): 245-252.
Prakash, O. & Kumar, A. 2014.
Solar greenhouse drying: A review. Renewable and Sustainable Energy Reviews 29: 905-910.
Prakash, O., Kumar, A. & Laguri,
V. 2016. Performance of modified greenhouse dryer with thermal energy storage. Energy
Reports 2: 155-162.
Shamekhi-Amiri, S., Gorji, T.B.,
Gorji-Bandpy, M. & Jahanshahi, M. 2018. Drying behaviour of lemon balm
leaves in an indirect double-pass packed bed forced convection solar dryer
system. Case Studies in Thermal Engineering 12: 677-686.
Sopian, K. & Othman, M.Y.H. 1992.
Estimates of monthly average daily global solar radiation in Malaysia. Renewable
Energy 2(3): 319-325.
Zulkifle, I., Alwaeli, A.H., Ruslan,
M.H., Ibarahim, Z., Othman, M.Y.H. & Sopian, K. 2018. Numerical
investigation of V-groove air-collector performance with changing cover in
Bangi, Malaysia. Case Studies in Thermal Engineering 12: 587-599.
*Corresponding author; email: zazai@ukm.edu.my
|