Sains Malaysiana 49(11)(2020): 2679-2687
http://dx.doi.org/10.17576/jsm-2020-4911-07
Thermal
Behavior of Cocrystal: A Case Study of Ketoprofen-Malonic Acid and
Ketoprofen-Nicotinamide Cocrystals
(Kelakuan
Termal Kokristal: Kajian Kes Kokristal Ketoprofen-Asid Malonik dan
Ketoprofen-Nikotinamida)
YUDI
WICAKSONO1,5*, DWI SETYAWAN2, ARI SATIA NUGRAHA3,5 & SISWANDONO4
1Department
of Pharmaceutics, Faculty of Pharmacy, University of Jember, 68121 Jember,
Indonesia
2Department
of Pharmaceutics, Faculty of Pharmacy, Airlangga University, 60286 Surabaya,
Indonesia
3Drug
Utilisation and Discovery Research Group, Faculty of Pharmacy, University of
Jember
68121
Jember, Indonesia
4Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, 60286
Surabaya, Indonesia
5Center
for Development of Advanced Science and Technology, University of Jember, 68121
Jember, Indonesia
Received: 30 November 2019/Accepted: 25 May 2020
ABSTRACT
Thermal
properties are essential parameters in transformations of solid state. It is
useful for estimating physical-chemical interactions that occur specifically in
a multicomponent system as cocrystal. However, there is still minimum
information about determining the thermal properties of cocrystal in
literature. In this study, the investigation of thermal behavior of cocrystal
was determined in non-isothermal conditions based on the Kissinger method. The
ketoprofen-malonic acid (KMA) and ketoprofen-nicotinamide (KN) cocrystal used
as model were prepared using solvent evaporation method, while the
characterization was performed by powder x-ray diffraction (PXRD), differential
scanning calorimetry (DSC), and Fourier-transform infrared (FTIR). From the
experimental results, the activation energy (Ea) of pure ketoprofen,
KMA cocrystal, and KN cocrystal are 264.38, 384.77, and 116.64 kJ mol-1,
while the enthalpy of activation (ΔH*) are 261.31, 381.78, and 113.76 kJ mol-1, respectively. The
calculated values of entropy of activation (ΔS*) for pure ketoprofen, KMA cocrystal, and KN cocrystal are 465.22,
809.77, and 84.34 J K-1 mol-1 and the free energy of
activation (ΔG*) of pure
ketoprofen, KMA cocrystal, and KN cocrystal obtained by general thermodynamic
equation are 89.53, 90.87, and 84.62 kJ mol-1, respectively.
Experimental results of the thermodynamic parameters showed cocrystals to have
a positive value of ΔS*,
indicating the formation of cocrystals was a non-spontaneous process. Also, the
KMA cocrystal had greater free energy of activation (ΔG*) than the KN cocrystal which indicated the
formation of the crystal lattice involving greater binding energy than KN
cocrystal.
Keywords:
Cocrystal; ketoprofen; Kissinger method; thermal properties
ABSTRAK
Sifat
terma adalah parameter penting dalam transformasi keadaan pepejal. Ia berguna
untuk menganggar interaksi fizikal-kimia yang berlaku secara khusus dalam
sistem multikomponen sebagai kokristal. Walau bagaimanapun, maklumat berkenaan
penentuan sifat terma kokristal dalam kajian kepustakaan masih kurang. Dalam
penyelidikan ini, kajian terhadap sifat terma kokristal ditentukan dalam
keadaan bukan isotermal berdasarkan kaedah Kissinger. Ketoprofen-asid malonik
(KMA) dan ketoprofen-nikotinamida (KN) yang digunakan sebagai model disediakan
menggunakan kaedah penyejatan pelarut, sementara pencirian dilakukan dengan
pembelauan sinar-x serbuk (PXRD), kalorimetri pengimbasan pembezaan (DSC) dan
transformasi Fourier inframerah (FTIR). Daripada keputusan kajian, tenaga
pengaktifan (Ea) ketoprofen tulen, kokristal KMA, dan kokristal KN
adalah 264.38, 384.77 dan 116.64 kJ mol-1, sementara entalpi
pengaktifan (ΔH*)
masing-masing adalah 261.31, 381.78 dan 113.76 kJ mol-1. Nilai
pengiraan entropi pengaktifan (ΔS*)
untuk ketoprofen tulen, kokristal KMA dan kokristal KN adalah 465.22, 809.77
dan 84.34 J K-1 mol-1 dan tenaga pengaktifan bebas (ΔG
*) ketoprofen tulen, kokristal KMA dan
kokristal KN yang diperoleh oleh persamaan termodinamik am masing-masing adalah
89.53, 90.87 dan 84.62 kJ mol-1. Hasil uji kaji parameter
termodinamik menunjukkan kokristal yang terbentuk mempunyai nilai ΔS * yang positif, menunjukkan pembentukan
kokristal tersebut adalah melalui proses yang tidak spontan. Selain itu,
kokristal KMA juga mempunyai tenaga pengaktifan bebas (ΔG*) yang lebih besar daripada kokristal KN yang menunjukkan pembentukan kisi
kristal kokristal KMA menggunakan tenaga pengikatan yang lebih besar daripada
kokristal KN.
Kata
kunci: Kaedah Kissinger; ketoprofen; kokristal; sifat terma
REFERENCES
Boonchom,
B. & Danvirutai, C. 2009. Kinetics and thermodynamics of thermal
decomposition of synthetic AlPO4.2H2O. Journal of Thermal Analysis and Calorimetry 98(3): 771-777.
Chadha,
R., Bhandari, S., Haneef, J., Khullar, S. & Mandal, S. 2014. Cocrystals of
telmisartan: Characterization, structure elucidation, in vivo and toxicity studies. CrystEngComm 16: 8375-8389.
Chow,
S.F., Chen, M., Shi, L., Chow, A.H.L. & Sun, C.C. 2012. Simultaneously
improving the mechanical properties, dissolution performance, and hygroscopicity
of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharmaceutical Research 29(7):
1854-1865.
Diniz,
L.F., Souza, M.S., Carvalho, Jr. P.S., da Silva C.C.P., D'Vries, R.F. &
Ellena, J. 2018. Novel isoniazid cocrystals with aromatic carboxylic acids:
Crystal engineering, spectroscopy and thermochemical investigations. Journal of Molecular Structure 1153:
58-68.
Evora,
A.O.L., Castro, R.A.E., Maria, T.M.R., Silva, M.R., Ter Horst, J.H., Canotilho,
J. & Eusebio, M.E.S. 2014. A thermodynamic based approach on the
investigation of a diflunisal pharmaceutical co-crystal with improved intrinsic
dissolution rate. International Journal
of Pharmaceutics 466(1-2): 68-75.
Goud,
N.R., Gangavaram, S., Suresh, K., Pal, S., Manjunatha,
S.G., Nambiar, S. & Nangia, A. 2012. Novel furosemide cocrystals
and selection of high solubility drug forms. Journal of Pharmaceutical Sciences 101(2): 664-680.
Kuleshova,
L.N., Hofmann, D.W.M. & Boese, R. 2013. Lattice energy calculation - a
quick tool for screening of cocrystals and estimation of relative solubility.
Case of flavonoids. Chemical Physics
Letters 564: 26-32.
Liu,
X., Lu, M., Guo, Z., Huang, L., Feng, X. & Wu, C. 2012. Improving the
chemical stability of amorphous solid dispersion with cocrystal technique by
hot melt extrusion. Pharmaceutical
Research 29(3): 806-817.
Liu,
W., Dang, L. & Wei, H. 2013. Thermal, phase transition, and thermal
kinetics studies of carbamazepine. Journal
of Thermal Analysis and Calorimetry 111(3): 1999-2004.
Ma,
P., Zhang, L., Zhu, S.G. & Chen, H.H. 2012. Synthesis, structural
investigation, thermal decomposition, and properties of a cocrystal energetic
perchlorate amine salt. Combustion,
Explosion, and Shock Waves 48(4): 483-487.
Masuda,
T., Yoshihashi, Y., Yonemochi, E., Fujii, K., Uekusa, H. & Terada, K. 2012.
Cocrystallization and amorphization induced by drug-excipient interaction
improves the physical properties of acyclovir. International Journal of Pharmaceutics 422(1-2): 160-169.
McClements,
D.J. 2012. Crystals and crystallization in oil-in-water emulsions: Implications
for emulsion-based delivery systems. Advances
in Colloid and Interface Science 174: 1-30.
Perpetuo,
G.L., Chierice, G.O., Ferreira, L.T., Fraga-Silva, T.F.C., Venturini, J.,
Arruda, M.S.P., Bannach, G. & Castro, R.A.E. 2017. A combined approach
using differential scanning calorimetry with polarized light thermomicroscopy
in the investigation of ketoprofen and nicotinamide cocrystal. Thermochimica Acta 651: 1-10.
Pindelska,
E., Sokal, A. & Kolodziejski, W. 2017. Pharmaceutical cocrystals, salts and
polymorphs: Advanced characterization techniques. Advanced Drug Delivery Reviews 117: 111-146.
Qi,
Z., Zhang, D., Chen, F., Miao, J. & Ren, B. 2014. Thermal decomposition and
non- isothermal decomposition kinetics of carbamazepine. Russian Journal of Physical Chemistry A 88(13): 2308-2313.
Shohin,
I.E., Kulinich, J.I., Ramenskaya, G.V., Abrahamsson, B., Kopp, S., Langguth,
P., Polli, J.E., Shah, V.P., Groot, D.W., Barends, D.M. & Dressman, J.B.
2012. Biowaiver monographs for immediate-release solid oral dosage forms:
Ketoprofen. Journal of Pharmaceutical
Sciences 101(10): 3593-3603.
Sowa,
M., Slepokura, K. & Matczak-Jon, E. 2014. Solid-state characterization and
solubility of a genistein-caffeine cocrystal. Journal of Molecular Structure 1076: 80-88.
Srivastava,
A., Chandel, N. & Mehta, N. 2017. Calorimetric studies of crystallization
for multi-component glasses of Se–Te–Sn–Ag (STSA) system using model-free and
modelfitting non-isothermal methods.
Journal of Thermal Analysis and Calorimetry 128(2): 907-914.
Teoh,
X.Y., Mahyuddin, F.N., Ahmad, W. & Chan, S.Y. 2020. Formulation strategy of
nitrofurantoin: Co-crystal or solid dispersion? Pharmaceutical Development and Technology 25(2): 245-251.
Tita,
D., Fulias, A. & Tita, B. 2011. Thermal stability of ketoprofen - active
substance and tablets. Journal of Thermal
Analysis and Calorimetry 105(2): 501-508.
Tita,
B., Fulia, A., Bandur, G., Rusu, G. & Tita, D. 2010. Thermal stability of
ibuprofen. Kinetic study under non-isothermal conditions. Revue Roumaine Chimie 55(9): 553-558.
Vaghela,
R., Kulkarni, P.K., Hani, U., Varma, V.N.S.K. & Abhay, R. 2014. Enhancing
aqueous solubility of ketoprofen by fusion technique using suitable co-formers. Current Drug Therapy 9(3):
199-207.
Wang,
J.R., Yu, X., Zhou, C., Lin, Y., Chen, C., Pan, G. & Mei, X. 2015.
Improving the dissolution and bioavailability of 6-mercaptopurine via
co-crystallization with isonicotinamide. Bioorganic &
Medicinal Chemistry Letters 25(5): 1036-1039.
Wicaksono,
Y., Setyawan, D. & Siswandono, S. 2018. Multicomponent crystallization of
ketoprofen-nicotinamide for improving the solubility and dissolution rate. Chemistry
Journal of Moldova 13(2): 74-81.
Wicaksono,
Y., Setyawan, D. & Siswandono, S. 2017. Formation of ketoprofen-malonic
acid cocrystal by solvent evaporation method. Indonesian Journal of Chemistry 17(2): 161-166.
Yan,
Q.L., Zeman, S., Elbeih, A., Song, Z.W. & Malek, J. 2013.
The effect of crystal structure on the thermal
reactivity of CL-20 and its C4 bonded explosives (I):
Thermodynamic properties and decomposition kinetics. Journal of Thermal Analysis and Calorimetry 112(2): 823-836.
Yang,
X., Wang, J., Song, H. & Zou, W. 2016. Thermal properties and solubility of
methyl α -D-glucopyranoside in methanol at different temperatures. Fluid Phase Equilibria 409: 417-424.
Yuliandra,
Y., Zaini, E., Syofyan, S., Pratiwi, W., Putri, L.N., Pratiwi, Y.S. &
Arifin, H. 2018. Cocrystal of ibuprofen-nicotinamide: Solid-state
characterization and in vivo analgesic
activity evaluation. Scientia
Pharmaceutica 86(2): 23-33.
Zhang,
Y., Yan, C.M., Chen, C., Zhao, X.Q., Li, T. & Sun, B.W. 2019. Three new
cocrystals derived from liquid pyrazine spices: x‑ray structures and
Hirshfeld surface analyses. Research on
Chemical Intermediates 45(11): 5745-5760.
*Corresponding author; email: yudi.farmasi@unej.ac.id
|