Sains Malaysiana 49(11)(2020): 2679-2687

http://dx.doi.org/10.17576/jsm-2020-4911-07

 

Thermal Behavior of Cocrystal: A Case Study of Ketoprofen-Malonic Acid and Ketoprofen-Nicotinamide Cocrystals

(Kelakuan Termal Kokristal: Kajian Kes Kokristal Ketoprofen-Asid Malonik dan Ketoprofen-Nikotinamida)

 

YUDI WICAKSONO1,5*, DWI SETYAWAN2, ARI SATIA NUGRAHA3,5 & SISWANDONO4

 

1Department of Pharmaceutics, Faculty of Pharmacy, University of Jember, 68121 Jember, Indonesia

 

2Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, 60286 Surabaya, Indonesia

 

3Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember

68121 Jember, Indonesia

 

4Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, 60286 Surabaya, Indonesia

 

5Center for Development of Advanced Science and Technology, University of Jember, 68121 Jember, Indonesia

 

Received: 30 November 2019/Accepted: 25 May 2020

 

ABSTRACT

Thermal properties are essential parameters in transformations of solid state. It is useful for estimating physical-chemical interactions that occur specifically in a multicomponent system as cocrystal. However, there is still minimum information about determining the thermal properties of cocrystal in literature. In this study, the investigation of thermal behavior of cocrystal was determined in non-isothermal conditions based on the Kissinger method. The ketoprofen-malonic acid (KMA) and ketoprofen-nicotinamide (KN) cocrystal used as model were prepared using solvent evaporation method, while the characterization was performed by powder x-ray diffraction (PXRD), differential scanning calorimetry (DSC), and Fourier-transform infrared (FTIR). From the experimental results, the activation energy (Ea) of pure ketoprofen, KMA cocrystal, and KN cocrystal are 264.38, 384.77, and 116.64 kJ mol-1, while the enthalpy of activation (ΔH*) are 261.31, 381.78, and 113.76 kJ mol-1, respectively. The calculated values of entropy of activation (ΔS*) for pure ketoprofen, KMA cocrystal, and KN cocrystal are 465.22, 809.77, and 84.34 J K-1 mol-1 and the free energy of activation (ΔG*) of pure ketoprofen, KMA cocrystal, and KN cocrystal obtained by general thermodynamic equation are 89.53, 90.87, and 84.62 kJ mol-1, respectively. Experimental results of the thermodynamic parameters showed cocrystals to have a positive value of ΔS*, indicating the formation of cocrystals was a non-spontaneous process. Also, the KMA cocrystal had greater free energy of activation (ΔG*) than the KN cocrystal which indicated the formation of the crystal lattice involving greater binding energy than KN cocrystal.

 

Keywords: Cocrystal; ketoprofen; Kissinger method; thermal properties

 

ABSTRAK

Sifat terma adalah parameter penting dalam transformasi keadaan pepejal. Ia berguna untuk menganggar interaksi fizikal-kimia yang berlaku secara khusus dalam sistem multikomponen sebagai kokristal. Walau bagaimanapun, maklumat berkenaan penentuan sifat terma kokristal dalam kajian kepustakaan masih kurang. Dalam penyelidikan ini, kajian terhadap sifat terma kokristal ditentukan dalam keadaan bukan isotermal berdasarkan kaedah Kissinger. Ketoprofen-asid malonik (KMA) dan ketoprofen-nikotinamida (KN) yang digunakan sebagai model disediakan menggunakan kaedah penyejatan pelarut, sementara pencirian dilakukan dengan pembelauan sinar-x serbuk (PXRD), kalorimetri pengimbasan pembezaan (DSC) dan transformasi Fourier inframerah (FTIR). Daripada keputusan kajian, tenaga pengaktifan (Ea) ketoprofen tulen, kokristal KMA, dan kokristal KN adalah 264.38, 384.77 dan 116.64 kJ mol-1, sementara entalpi pengaktifan (ΔH*) masing-masing adalah 261.31, 381.78 dan 113.76 kJ mol-1. Nilai pengiraan entropi pengaktifan (ΔS*) untuk ketoprofen tulen, kokristal KMA dan kokristal KN adalah 465.22, 809.77 dan 84.34 J K-1 mol-1 dan tenaga pengaktifan bebas (ΔG *) ketoprofen tulen, kokristal KMA dan kokristal KN yang diperoleh oleh persamaan termodinamik am masing-masing adalah 89.53, 90.87 dan 84.62 kJ mol-1. Hasil uji kaji parameter termodinamik menunjukkan kokristal yang terbentuk mempunyai nilai ΔS * yang positif, menunjukkan pembentukan kokristal tersebut adalah melalui proses yang tidak spontan. Selain itu, kokristal KMA juga mempunyai tenaga pengaktifan bebas (ΔG*) yang lebih besar daripada kokristal KN yang menunjukkan pembentukan kisi kristal kokristal KMA menggunakan tenaga pengikatan yang lebih besar daripada kokristal KN.

 

Kata kunci: Kaedah Kissinger; ketoprofen; kokristal; sifat terma

 

REFERENCES

Boonchom, B. & Danvirutai, C. 2009. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4.2H2O. Journal of Thermal Analysis and Calorimetry 98(3): 771-777.

Chadha, R., Bhandari, S., Haneef, J., Khullar, S. & Mandal, S. 2014. Cocrystals of telmisartan: Characterization, structure elucidation, in vivo and toxicity studies. CrystEngComm 16: 8375-8389.

Chow, S.F., Chen, M., Shi, L., Chow, A.H.L. & Sun, C.C. 2012. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharmaceutical Research 29(7): 1854-1865.

Diniz, L.F., Souza, M.S., Carvalho, Jr. P.S., da Silva C.C.P., D'Vries, R.F. & Ellena, J. 2018. Novel isoniazid cocrystals with aromatic carboxylic acids: Crystal engineering, spectroscopy and thermochemical investigations. Journal of Molecular Structure 1153: 58-68.

Evora, A.O.L., Castro, R.A.E., Maria, T.M.R., Silva, M.R., Ter Horst, J.H., Canotilho, J. & Eusebio, M.E.S. 2014. A thermodynamic based approach on the investigation of a diflunisal pharmaceutical co-crystal with improved intrinsic dissolution rate. International Journal of Pharmaceutics 466(1-2): 68-75.

Goud, N.R., Gangavaram, S., Suresh, K., Pal, S., Manjunatha, S.G., Nambiar, S. & Nangia, A. 2012. Novel furosemide cocrystals and selection of high solubility drug forms. ‎Journal of Pharmaceutical Sciences 101(2): 664-680.

Kuleshova, L.N., Hofmann, D.W.M. & Boese, R. 2013. Lattice energy calculation - a quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids. Chemical Physics Letters 564: 26-32.

Liu, X., Lu, M., Guo, Z., Huang, L., Feng, X. & Wu, C. 2012. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharmaceutical Research 29(3): 806-817.

Liu, W., Dang, L. & Wei, H. 2013. Thermal, phase transition, and thermal kinetics studies of carbamazepine. Journal of Thermal Analysis and Calorimetry 111(3): 1999-2004.

Ma, P., Zhang, L., Zhu, S.G. & Chen, H.H. 2012. Synthesis, structural investigation, thermal decomposition, and properties of a cocrystal energetic perchlorate amine salt. Combustion, Explosion, and Shock Waves 48(4): 483-487.

Masuda, T., Yoshihashi, Y., Yonemochi, E., Fujii, K., Uekusa, H. & Terada, K. 2012. Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir. International Journal of Pharmaceutics 422(1-2): 160-169.

McClements, D.J. 2012. Crystals and crystallization in oil-in-water emulsions: Implications for emulsion-based delivery systems. Advances in Colloid and Interface Science 174: 1-30.

Perpetuo, G.L., Chierice, G.O., Ferreira, L.T., Fraga-Silva, T.F.C., Venturini, J., Arruda, M.S.P., Bannach, G. & Castro, R.A.E. 2017. A combined approach using differential scanning calorimetry with polarized light thermomicroscopy in the investigation of ketoprofen and nicotinamide cocrystal. Thermochimica Acta 651: 1-10.

Pindelska, E., Sokal, A. & Kolodziejski, W. 2017. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Advanced Drug Delivery Reviews 117: 111-146.

Qi, Z., Zhang, D., Chen, F., Miao, J. & Ren, B. 2014. Thermal decomposition and non- isothermal decomposition kinetics of carbamazepine. Russian Journal of Physical Chemistry A 88(13): 2308-2313.

Shohin, I.E., Kulinich, J.I., Ramenskaya, G.V., Abrahamsson, B., Kopp, S., Langguth, P., Polli, J.E., Shah, V.P., Groot, D.W., Barends, D.M. & Dressman, J.B. 2012. Biowaiver monographs for immediate-release solid oral dosage forms: Ketoprofen. Journal of Pharmaceutical Sciences 101(10): 3593-3603.

Sowa, M., Slepokura, K. & Matczak-Jon, E. 2014. Solid-state characterization and solubility of a genistein-caffeine cocrystal. Journal of Molecular Structure 1076: 80-88.

Srivastava, A., Chandel, N. & Mehta, N. 2017. Calorimetric studies of crystallization for multi-component glasses of Se–Te–Sn–Ag (STSA) system using model-free and modelfitting non-isothermal methods. Journal of Thermal Analysis and Calorimetry 128(2): 907-914.

Teoh, X.Y., Mahyuddin, F.N., Ahmad, W. & Chan, S.Y. 2020. Formulation strategy of nitrofurantoin: Co-crystal or solid dispersion? Pharmaceutical Development and Technology 25(2): 245-251.

Tita, D., Fulias, A. & Tita, B. 2011. Thermal stability of ketoprofen - active substance and tablets. Journal of Thermal Analysis and Calorimetry 105(2): 501-508.

Tita, B., Fulia, A., Bandur, G., Rusu, G. & Tita, D. 2010. Thermal stability of ibuprofen. Kinetic study under non-isothermal conditions. Revue Roumaine Chimie 55(9): 553-558.

Vaghela, R., Kulkarni, P.K., Hani, U., Varma, V.N.S.K. & Abhay, R. 2014. Enhancing aqueous solubility of ketoprofen by fusion technique using suitable co-formers. Current Drug Therapy 9(3): 199-207.

Wang, J.R., Yu, X., Zhou, C., Lin, Y., Chen, C., Pan, G. & Mei, X. 2015. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide. Bioorganic & Medicinal Chemistry Letters 25(5): 1036-1039.

Wicaksono, Y., Setyawan, D. & Siswandono, S. 2018. Multicomponent crystallization of ketoprofen-nicotinamide for improving the solubility and dissolution rate. Chemistry Journal of Moldova 13(2): 74-81.

Wicaksono, Y., Setyawan, D. & Siswandono, S. 2017. Formation of ketoprofen-malonic acid cocrystal by solvent evaporation method. Indonesian Journal of Chemistry 17(2): 161-166.

Yan, Q.L., Zeman, S., Elbeih, A., Song, Z.W. & Malek, J. 2013. The effect of crystal structure on the thermal reactivity of CL-20 and its C4 bonded explosives (I): Thermodynamic properties and decomposition kinetics. Journal of Thermal Analysis and Calorimetry 112(2): 823-836.

Yang, X., Wang, J., Song, H. & Zou, W. 2016. Thermal properties and solubility of methyl α -D-glucopyranoside in methanol at different temperatures. Fluid Phase Equilibria 409: 417-424.

Yuliandra, Y., Zaini, E., Syofyan, S., Pratiwi, W., Putri, L.N., Pratiwi, Y.S. & Arifin, H. 2018. Cocrystal of ibuprofen-nicotinamide: Solid-state characterization and in vivo analgesic activity evaluation. Scientia Pharmaceutica 86(2): 23-33.

Zhang, Y., Yan, C.M., Chen, C., Zhao, X.Q., Li, T. & Sun, B.W. 2019. Three new cocrystals derived from liquid pyrazine spices: x‑ray structures and Hirshfeld surface analyses. Research on Chemical Intermediates 45(11): 5745-5760.

 

*Corresponding author; email: yudi.farmasi@unej.ac.id

 

     

 

 

previous