Sains Malaysiana 49(8)(2020): 1809-1817
http://dx.doi.org/10.17576/jsm-2020-4908-05
Tracing
the Carbon Flow in Tropical Watershed using Stable Isotope Technique
(Mengesan
Aliran Karbon di dalam Legeh Sungai Tropika Menggunakan Teknik Isotop Stabil)
MOHAMAD SHAIFUL MD YUSUFF1, MUHAMMAD
IZZUDDIN SYAKIR1,2* & WIDAD FADHULLAH1
1Environmental
Technology Division, School of Industrial Technology, Universiti Sains Malaysia,
11800 Minden, USM Pulau Pinang, Malaysia
2Centre for Global Sustainability Studies,
Universiti Sains Malaysia,
11800 Minden, USM Pulau Pinang, Malaysia
Received:
17 March 2019/Accepted: 25 March 2020
ABSTRACT
Research on catchment area have
traditionally involved concentration and flux measurement to better understand
weathering, transport and cycling of materials from land to sea. Potentially,
modification of terrestrial environment can alter the carbon flow in a
catchment. This research is to characterize dissolved inorganic carbon (DIC) in
Sungai Kurau and Tasik Bukit Merah. A progressive depletion of (δ¹³C–DIC:
-14.20 ± 0.47‰) towards downstream (δ¹³C–DIC: -24.44 ± 0.59‰) is observed.
The trend indicates photosynthesis activity at the upper stream system where
microbial respiration process is observed to occur at the Tasik Bukit Merah
located at downstream area. The dynamic of carbon pathway is highly affected by
allochthonous input and autochthonous process in the catchment system. Land use
activities within the catchment can disturb the balance between biological and
geological processes which control the carbon pool in Kurau catchment.
Keywords: Carbon-13; carbon cycle;
photosynthesis; respiration; Tasik Bukit Merah
ABSTRAK
Penyelidikan di kawasan tadahan secara
tradisinya melibatkan kepekatan dan pengukuran fluks untuk lebih memahami
luluhawa, pengangkutan dan kitaran bahan dari darat ke laut. Berpotensi,
pengubahsuaian persekitaran daratan dapat mengubah aliran karbon dalam kawasan
tadahan. Kajian ini adalah untuk mengenal pasti karbon bukan organik yang
dilarutkan (DIC) di Sungai Kurau dan Tasik Bukit Merah. Pengurangan progresif
(δ¹³C-DIC: -14.20 ± 0.47‰) ke arah hiliran (δ¹³C-DIC: -24.44 ± 0.59‰)
diperhatikan. Petunjuk ini menunjukkan aktiviti fotosintesis pada sistem hulu
sungai dengan proses respirasi mikrob diperhatikan berlaku di Tasik Bukit Merah
yang terletak di kawasan hilir sungai. Dinamik laluan karbon amat dipengaruhi
oleh input dan proses autoktonus dalam sistem kawasan tadahan. Aktiviti
penggunaan tanah dalam kawasan tadahan boleh mengganggu keseimbangan antara
proses biologi dan geologi yang mengawal kelompok karbon di kawasan tadahan
Kurau.
Kata kunci: Fotosintesis; karbon-13; kitaran karbon; respirasi; Tasik Bukit
Merah
REFERENCES
Andriesse,
J.P. & Schelhaas, R.M. 1987. A monitoring study on nutrient cycles in soils
used for shifting cultivation under various climatic conditions in tropical
Asia. III. The effects of land clearing through burning on fertility level. Agriculture, Ecosystems & Environment 19(4): 311-332.
Berner,
E.K. & Berner, R.A. 2012. Global
Environment: Water, Air, and Geochemical Cycles. New Jersey: Princeton
University Press.
Cerling,
T.E., Solomon, D.K., Quade, J. & Bowman, J.R. 1991. On the isotopic
composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta 55(11): 3403-3405.
Clark,
I.D. & Fritz, P. 2013. Environmental
Isotopes in Hydrogeology. Boca Raton: CRC Press.
Conrad,
R. 2005. Quantification of methanogenic pathways using stable carbon isotopic
signatures: A review and a proposal. Organic
Geochemistry 36(5): 739-752.
DID. 2010. Bukit Merah Lake Brief. NRE
Putrajaya: Department of Irrigation and Drainage, Kerian.
Dubois,
K.D., Lee, D. & Veizer, J. 2010. Isotopic constraints on alkalinity, dissolved
organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. Journal of Geophysical Research:
Biogeosciences 115(G2): 1-8.
Farquhar,
G.D., Ehleringer, J.R. & Hubick, K.T. 1989. Carbon isotope discrimination
and photosynthesis. Annual Review of
Plant Biology 40(1): 503-537.
Holgerson, M.A. & Raymond, P.A. 2016.
Large contribution to inland water CO2 and CH4 emissions
from very small ponds. Nature Geoscience 9(3): 222-226.
Hope,
D., Billett, M.F. & Cresser, M.S. 1994. A review of the export of carbon in
river water: Fluxes and processes. Environmental
Pollution 84(3): 301-324.
IAEA. 1993. Reference and intercomparison
materials for stable isotope of light element. In Proceeding of a Consultants Meeting held in Vienna. Vienna, p. 165.
Ismail, W.R. & Najib, S.A.M. 2011.
Sediment and nutrient balance of Bukit Merah Reservoir, Perak (Malaysia). Lakes & Reservoirs: Science, Policy and
Management for Sustainable Use 16(3): 179-184.
Ishak, M.I.S. 2014. A reconnaissance study of
water and carbon fluxes in Tropical watersheds of Peninsular Malaysia: Stable
isotope constraints. PhD thesis, University of Ottawa (Unpublished).
Karim, A., Dubois, K. & Veizer, J. 2011.
Carbon and oxygen dynamics in the Laurentian Great Lakes: Implications for the CO2 flux from terrestrial aquatic systems to the atmosphere. Chemical Geology 281(1-2): 133-141.
Kalff, J. 2002. Limnology: Inland Water Ecosystems. Upper Saddle River, NJ:
Prentice Hall.
Lee, K.Y. 2014. Carbon cycling in tropical
rivers: A carbon isotope reconnaissance study of the Langat and Kelantan
basins. PhD thesis, University of Ottawa (Unpublished).
Mackenzie, F.T. & Lerman, A. 2006. Carbon in the Geobiosphere: Earth's Outer
Shell. Netherlands: Springer Science & Business Media.
Meybeck, M. 1993. Riverine transport of
atmospheric carbon: Sources, global typology and budget. Water, Air, and Soil Pollution 70(1-4): 443-463.
Park, R. & Epstein, S. 1961. Metabolic
fractionation of C13 & C12 in plants. Plant Physiology 36(2): 133-138.
SERCON. 2007. Isotope Ratio Mass Spectrometer (IRMS) Operation Manual. U.K:
SERCON Group.
Stelzer, R.S., Heffernan, J. & Likens,
G.E. 2003. The influence of dissolved nutrients and particulate organic matter
quality on microbial respiration and biomass in a forest stream. Freshwater Biology 48(11): 1925-1937.
Stephens, M. & Rose, J. 2005. Modern
stable isotopic (δ18O, δ2H, δ13C) variation in terrestrial,
fluvial, estuarine and marine waters from north-central Sarawak, Malaysian
Borneo. Earth Surface Processes and Landforms 30(7): 901-912.
Striegl, R.G., Kortelainen, P., Chanton,
J.P., Wickland, K.P., Bugna, G.C. & Rantakari, M. 2001. Carbon dioxide
partial pressure and 13C content of north temperate and boreal lakes
at spring ice melt. Limnology and
Oceanography 46(4): 941-945.
Talib, S.H.A., Yusoff, M.S., Hasan, Z.A.,
Ismail, W.R. & Abustan, M.S. 2016. Nutrient concentration distribution in
sediment and overlying water at Bukit Merah reservoir, Perak. In The 3rd International Conference
on Civil and Environmental Engineering for Sustainability (IConCEES 2015).
pp. 1-8.
Varlam, C., Stefanescu, I., Varlam, M.,
Bucur, C., Popescu, I. & Faurescu, I. 2006. Optimization of 14C
concentration measurement in aqueous samples using the direct absorption method
and LSC. Advances in Liquid Scintillation
Spectrometry 49: 423-428.
Wanninkhof, R. 1985. Kinetic fractionation of
the carbon isotopes 13C and 12C during transfer of CO2 from air to seawater. Tellus B: Chemical
and Physical Meteorology 37(3): 128-135.
Weiss, R.F. 1974. Carbon dioxide in water and
seawater: The solubility of a non-ideal gas. Marine Chemistry 2(3): 203-215.
Whiticar, M.J., Faber, E. & Schoell, M.
1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - isotope evidence. Geochimica et Cosmochimica Acta 50(5): 693-709.
Williamson, C.E., Saros, J.E., Vincent, W.F.
& Smol, J.P. 2009. Lakes and reservoirs as sentinels, integrators, and
regulators of climate change. Limnology
and Oceanography 54(6part2): 2273-2282.
Zou, J. 2016. Correction: Sources and
dynamics of inorganic carbon within the upper reaches of the Xi River basin,
Southwest China. PloS ONE 11(12):
e0169379.
*Corresponding
author; email: misyakir@usm.my
|