Sains Malaysiana 49(8)(2020): 1905-1913
http://dx.doi.org/10.17576/jsm-2020-4908-12
Molecular
Docking Study of the Interactions between Plasmodium falciparum Lactate
Dehydrogenase and 4-aminoquinoline Hybrids
(Kajian Dok Molekul Mengenai Interaksi antara Hibrid 4-aminokuinolina dan Plasmodium falciparum Laktat Dehidrogenase)
NUR
HANIS ZAKARIA1, LAM KOK WAI2 & NURUL IZZATY HASSAN1*
1Department of Chemical Sciences, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Drug and Herbal Research Centre, Faculty of Health
Sciences, Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory,
Malaysia
Received: 29 January 2020/Accepted:
10 April 2020
Abstract
Malaria is a potentially deadly
disease with many anti-malarial drugs have been
rendered ineffective due to Plasmodium falciparum resistance
concern. Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme is a crucial
malaria parasite enzyme involved in the glycolytic pathway, thus, has been considered as a potential molecular target.
Initially, molecular docking was performed using AutoDock Vina, Molegro Virtual Docker, and CDOCKER software to investigate
the molecular interactions of 4-aminoquinoline antimalarial hybrids compounds
with PfLDH enzyme. All ten 4-aminoquinoline hybrids
derivatives docked to the PfLDH binding site. The
results showed that these compounds exhibited either comparable or higher
binding affinity than the reference drug chloroquine, amodiaquine,
and hydroxychloroquine. Visually, some of the
compounds possessed functional binding interactions, possibly due to their
similar structural conformation and binding interactions of chloroquine in the
binding site. Apart from that, the docking results also suggest that these
compounds potentially promote additional hydrogen-bonding interactions with the
residues in the binding site. Interestingly, the compounds also predicted to
interact with essential PHE52, VAL26, ILE54, ILE119, and ALA98 residues, which
are required to act as a competitive inhibitor for this glycolytic enzyme.
Keywords:
4-aminoquinoline; malaria; molecular docking; Plasmodium
falciparum lactate dehydrogenase (PfLDH) enzyme
Abstrak
Malaria merupakan antara penyakit yang boleh menyebabkan kematian dengan peningkatan kerintangan ubat-ubatan anti-malaria sedia ada. Enzim Plasmodium falciparum dehidrogenase (PfLDH) merupakan enzim sasaran yang terlibat dalam laluan glikolitik. Oleh itu, kajian dok molekul telah dijalankan menggunakan perisian AutoDock Vina, Molegro Virtual Docker dan CDOCKER untuk mengkaji interaksi molekul antara 4-aminokuinolina antimalaria hibrid terhadap PfLDH enzim. Kesemua sepuluh sebatian hibrid dilihat sesuai untuk didok menggunakan kedua-dua perisian dan menunjukkan pengikatan keafinan yang baik dan setanding dengan pengikatan keafinan sebatian klorokuina, amodiakuina dan hidrosiklorokuina. Pengikatan keafinan yang baik dan setanding klorokuina disebabkan persamaan struktur bentuk dengan klorokuina pada tapak pengikat selain kemampuan menambah ikatan hidrogen. Sebatian juga berinteraksi dengan asid amino yang penting sebagai perencat bersaing untuk enzim glikolitik. Semua asid amino yang penting termasuklah PHE52, VAL26,
ILE54, ILE119 dan ALA98.
Kata kunci: Dok molekul; enzim Plasmodium falciparum dehidrogenase (PfLDH); malaria; 4-aminokuinolina
REFERENCES
Chaikuad,
A., Fairweather, V., Conners,
R., Joseph-Horne, Turgut-Balik, R. & Brady, L.
2005. Structure of lactate dehydrogenase from plasmodium vivax:
Complexes with NADH and APADH+. Biochemistry 44: 16221-16228.
Jayaram,
B., Tanya, S., Goutam, M., Abhinav,
M., Shashank, S. & Vandana,
S. 2012. Sanjeevini: A freely accessible web-server
for target-directed lead molecule discovery. BMC Bioinformatics 13(Suppl 7): S7.
Kalita,
J., Chetia, D. & Rudrapal,
M. 2019. Molecular docking, drug-likeliness studies, and ADMET prediction of quinoline imines for
antimalarial activity. Chem. Sci. Trans 8(2): 208-218.
Kitchen, D.B., Decornez,
H., Furr, J.R. & Bajorath,
J. 2004. Docking and scoring in virtual screening for drug discovery. Nat.
Rev.: Drug Discovery 3: 935-949.
Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. 1997. Experimental and
computational approaches to estimate solubility and permeability in drug
discovery and development settings. Adv. Drug Delivery Rev. 23: 3-26.
O’Neill, P.M., Ward, S.A., Berry,
N.G., Jeyadevan, J.P., Biagini,
G.A., Asadollaly, E., Park, K.B. & Bray P. G.
2006. A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Current Topics in Medicinal Chemistry 6: 479-509.
Read, J.A., Wilkinson, K.W.,
Tranter, R., Sessions, R.B. & Brady, R.L. 1999. Chloroquine binds in the cofactor binding site of plasmodium falciparum lactate
dehydrogenase. The Journal of Biological
Chemistry 274(15): 10213-10218.
Shadrack,
D.M., Nyandoro, S., Munissi,
J. & Mubofu, E. 2016. In silico evaluation of anti-malarial
agents from hoslundia opposite as inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme. Computational Molecular Bioscience 6:
23-32.
Thomsen, R. & Christensen, M.H.
2006. MolDock: A new technique for high-accuracy
molecular docking. Journal of Medicinal Chemistry 49(11): 3315-3321.
Trott,
O. & Olson, A. 2010. AutoDock Vina:
Improving the speed and accuracy of docking with a new scoring function,
efficient optimization, and multithreading. Journal
of Computational Chemistry 31(2): 455-461.
Waingeh,
V., Groves, A. & Eberle, J. 2013. Binding of quinoline-based inhibitors to Plasmodium falciparum lactate dehydrogenase: A molecular docking
study. Open Journal of Biophysics 2013.
WHO.
2019. World Malaria Report.
Geneva: World Health Organization.
Wu, G., Robertson, D., Brooks, C.
& Vieth, M. 2003. Detailed analysis of grid-based
molecular docking: A case study of CDOCKER? A CHARMm-based
MD docking algorithm. Journal of Computational Chemistry 24(13):
1549-1562.
*Corresponding
author; email: drizz@ukm.edu.my
|