Sains Malaysiana 49(8)(2020):
1951-1957
http://dx.doi.org/10.17576/jsm-2020-4908-17
Cellulose Powder from Piper nigrum L. Agro-Industrial Waste: Effect of Preparation Condition
on Chemical Structure and Thermal Degradation
(Serbuk Selulosa daripada Sisa Agro-Industri Piper nigrum L.: Kesan Keadaan Penyediaan
terhadap Struktur Kimia dan Degradasi Terma)
AIN
NADIAH SOFIAH AHMAD KHORAIRI1, NOOR SOFFALINA SOFIAN-SENG1*,
RIZAFIZAH OTHAMAN2 & KHAIRUL FARIHAN KASIM3
1Department of Food Sciences, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Department of Chemical Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3School of Bioprocess
Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Indera Kayangan, Malaysia
Received:
26 January 2020/Accepted: 8 April 2020
ABSTRACT
White pepper is
generally produced via water retting process to decorticate the pericarp
of green pepper. The decorticated pericarp is considered as an agro-industrial waste and environmental pollutant as many farmers still
discard the waste into the rivers. These wastes majorly contain cellulose,
hemicellulose, pectin, and other organic compound. Cellulose was obtained from alkaline treatment (4 wt. % sodium hydroxides, NaOH) followed by bleaching process. This study
reports the effect of soaking cycle in bleaching treatment on the chemical
structure and thermal degradation of cellulose. The cellulose obtained
from pepper (Piper
nigrum L.) pericarp
waste were characterised by colour
analysis, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric
analysis (TGA). Increased number of bleaching cycles produced a whiter colour
and high thermal stability of cellulose powder. The whiteness index (WI) for
high bleaching cycle sample was found significantly high (p<0.05) with the
value of 77.00 ± 1.10. Thermal analysis indicates a derivative
thermogravimetric analysis (DTG) peak
at 332 °C. The FTIR spectrum proven that the condition of bleaching treatment
changes the absorption intensity at bands 1732, 1540, and 1460 cm-1 which due to the loss of hemicellulose and lignin. The use of pepper pericarp
waste that is usually discarded may provide a
sustainable alternative for the production of cellulose.
Keywords: Agro-industrial waste; cellulose; white
pepper pericarp
ABSTRAK
Umumnya lada putih dihasilkan
melalui proses perendaman air untuk menanggalkan perikarpa luar lada hijau.
Kulit lada yang ditanggalkan ialah sisa agro-industri dan bahan pencemar
kerana kebanyakan petani masih membuangnya ke dalam sungai. Sisa ini mengandungi
selulosa secara majoritinya, berserta hemiselulosa, pektin dan sebatian
organik. Selulosa boleh diperoleh melalui kaedah alkali (4 bt.
% larutan natrium hidroksida, NaOH) dan pelunturan. Kajian ini bertujuan untuk
melaporkan kesan kitaran rendaman dalam rawatan pelunturan terhadap struktur
kimia dan degradasi termal selulosa. Selulosa yang diperoleh daripada sisa
perikarpa lada (Piper
nigrum L.) dicirikan dengan menggunakan analisis warna, Fourier spektroskopi
inframerah (FTIR) dan analisis termogravimetri (TGA). Peningkatan jumlah
kitaran rawatan pelunturan, menghasilkan selulosa kulit lada yang lebih putih
dan tinggi kestabilan termal. Indeks keputihan (WI) bagi sampel dengan jumlah
kitaran rawatan pelunturan yang tinggi, dilihat meningkat secara signifikan
(p<0.05) dengan nilai 77.00 ± 1.10.
Analisis terma menunjukkan puncak terbitan analisis termogravimetri (DTG) pada
suhu 332 °C. Spektrum FTIR membuktikan keadaan penyediaan rawatan pelunturan
mengubah keamatan jalur 1732, 1540 dan
1460 cm-1 kerana kehilangan hemiselulosa dan lignin. Penggunaan
sisa perikarpa lada yang biasanya dibuang mungkin dapat memberi alternatif dalam
menghasilkan selulosa bagi kegunaan industri lain.
Kata
kunci: Perikarpa lada putih;
selulosa; sisa agro-industri
REFERENCES
Alemdar, A. & Sain, M. 2008. Isolation and
characterization of nanofibers from agricultural residues-wheat straw and soy
hulls. Bioresource Technology 99(6): 1664-1671.
Balaji,
A.N. & Nagarajan, K.J. 2017. Characterization of alkali treated and
untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydrate
Polymers 174: 200-208.
Bhandari,
N.L., Mormann, W., Michler, G.H. & Adhikari, R. 2013. Functionalisation of
bamboo and sisal fibres cellulose in ionic liquids. Materials Research Innovations 17(4): 250-256.
Bharathiraja, S., Suriya, J., Krishnan, M., Manivasagan, P.
& Kim, S.K. 2017. Production of enzymes from agricultural wastes and their
potential industrial applications. In Advances in Food and Nutrition
Research, edited by Kim, S.K. & Toldrá, F. Massachusetts: Academic Press. pp. 80: 125-148.
Bunchol, A.J. 2011. Interview with Food
Technologist Officer Malaysian Pepper Board, Sarawak.
Color
iQC and Color iMatch Color Calculations Guide. 2012. Version 8.0: 14.
Fathi,
H.I., El-Shazly, A.H., Elkady, M.F. & Madih, K. 2018. Assessment of new
technique for production cellulose nanocrystals from agricultural waste. Materials Science Forum 928(August
2018): 83-88.
Henrique, M.A., Silvério, H.A., Neto, W.P.F. & Pasquini,
D. 2013. Valorization of an agro-industrial waste, mango seed, by the
extraction and characterization of its cellulose nanocrystals. Journal
of Environmental Management 121: 202-209.
Ilyas,
R.A., Sapuan, S.M., Sanyang, M.L., Ishak, M.R. & Zainudin, E.S. 2018.
Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites
and its potential applications: A review. Current Analytical Chemistry 14(3):
203-225.
Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction,
preparation and characterization of cellulose fibers and nanocrystals from rice
husk. Industrial Crops and Products 37(1): 93-99.
Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne,
A., Hamzeh, Y. & Davoodi, R. 2015. Different preparation methods and
properties of nanostructured cellulose from various natural resources and
residues: A review. Cellulose 22(2): 935-969.
Jonoobi,
M., Harun, J., Mishra, M. & Oksman, K. 2009. Chemical composition,
crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and
nanofibers. BioResources 4(2):
626-639.
Kalia,
S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J. &
Nassiopoulos, E. 2011. Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science 2011: Article ID. 837875.
Kamarulzaman, N.H., Husin, H., Mohayidin, M.G. & Enchi,
J. 2013. Buyers’ preferences among pepper farmers in Sarawak. Journal
of Agribusiness Marketing 6: 1-13.
Karimi,
S., Tahir, P.M., Karimi, A., Dufresne, A. & Abdulkhani, A. 2014. Kenaf bast
cellulosic fibers hierarchy: A comprehensive approach from micro to nano. Carbohydrate Polymers 101: 878-885.
Lee,
H.L., Chen, G.C. & Rowell, R.M. 2004. Thermal properties of wood reacted
with a phosphorus pentoxide-amine system.
Journal of Applied Polymer Science 91(4): 2465-2481.
Mandal, A. & Chakrabarty, D. 2011. Isolation of
nanocellulose from waste sugarcane bagasse (SCB) and its
characterization. Carbohydrate Polymers 86(3): 1291-1299.
Mohd, N.H., Ismail, N.F.H., Zahari, J.I., Fathilah, W.,
Kargarzadeh, H., Ramli, S., Ahmad, I., Yarmo, M.A. & Othaman, R. 2016.
Effect of aminosilane modification on nanocrystalline cellulose properties. Journal
of Nanomaterials 2016: Article
ID. 4804271.
Mussatto,
S.I., Ballesteros, L.F., Martins, S. & Teixeira, J.A. 2012. Use of
agro-Industrial wastes in solid-state fermentation processes. In Industrial Waste, edited by Show, K.Y.
Rijeka: Intech. pp. 121-140.
Ng,
T.S., Ching, Y.C., Awanis, N., Ishenny, N. & Rahman, M.R. 2014. Effect of
bleaching condition on thermal properties and UV transmittance of PVA/cellulose
biocomposites. Materials Research
Innovations 18(sup6): S6-400-S6-404.
Ngadi, N. & Lani, N.S. 2014. Extraction and
characterization of cellulose from empty fruit bunch (EFB) fiber. Jurnal
Teknologi 68(5): 35-39.
Phanthong, P., Ma, Y., Guan, G. & Abudula, A. 2015.
Extraction of nanocellulose from raw apple stem. Journal of the Japan
Institute of Energy 94(8):
787-793.
Reddy, J.P. & Rhim, J.W. 2018. Extraction and
characterization of cellulose microfibers from agricultural wastes of onion and
garlic. Journal of Natural Fibers 15(4): 465-473.
Rosa, M.F., Medeiros, E.S., Malmonge, J.A.,
Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J. & Imam,
S.H. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of
preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers 81(1): 83-92.
Sephton, P.S. 2011.
Spatial arbitrage in Sarawak pepper prices. Canadian Journal of Agricultural
Economics/Revue canadienne d'agroeconomie 59(3):
405-416.
Silva,
M.C., Lopes, O.R., Colodette, J.L., Porto, A.O., Rieumont, J., Chaussy, D.,
Belgacem, M.N. & Silva, G.G. 2008. Characterization of three non-product
materials from a bleached eucalyptus kraft pulp mill,
in view of valorising them as a source of cellulose fibres. Industrial Crops and Products 27(3):
288-295.
Yin, O.S., Ahmad, I. & Amin, M.C.I.M. 2015.
Effect of cellulose nanocrystals content and pH on swelling behaviour of
gelatin based hydrogel. Sains Malaysiana 44(6): 793-799.
Zain, N.F.M., Yusop, M.S. & Ahmad, I. 2014. Preparation
and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. Journal of
Nutrition & Food Sciences 5(1): 334.
*Corresponding author; email: soffalina@ukm.edu.my
|