Sains Malaysiana 49(8)(2020): 2023-2034
http://dx.doi.org/10.17576/jsm-2020-4908-25
Ukuran
Kebersandaran bagi Pulangan
Lima-Minit Berbanding Pulangan Harian menggunakan Kopula
Statik dan Dinamik
(Dependence Measure of
Five-Minutes Returns Compared to Daily Returns using Static and Dynamic
Copulas)
NURUL
HANIS AMINUDDIN JAFRY1*, RUZANNA AB RAZAK2 &
NORISZURA ISMAIL1
1Jabatan Sains Matematik, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,
Malaysia
2Economics and Quantitative Methods
Unit, Faculty of Management, Multimedia University, 63100 Cyberjaya, Selangor Darul Ehsan,
Malaysia
Received:
22 January 2020/Accepted: 29 April 2020
ABSTRAK
Kajian tentang kebersandaran antara
pasaran saham adalah penting kerana kemampuannya memberi petunjuk dalam proses
membuat-keputusan bagi mengatur strategi pelaburan. Kebanyakan kajian lepas
mengukur kebersandaran antara pasaran saham menggunakan kopula statik. Walau
bagaimanapun, sejak beberapa tahun kebelakangan ini, kopula dinamik telah
digunakan sebagai kaedah alternatif bagi mengukur kebersandaran kerana
keupayaannya untuk memodelkan kebersandaran masa-berubah antara pasaran saham. Kebanyakan kajian berkaitan kopula lebih tertumpu kepada
korelasi data bivariat bagi pulangan harian atau mingguan atau bulanan untuk
menjelaskan pergerakan bersama antara pasaran kewangan dan sebagai petunjuk
kewangan bagi aspek pengurusan portfolio. Namun begitu, maklumat daripada data
berfrekuensi rendah tidak lagi mampu untuk menampung aktiviti perdagangan
berskala besar. Sebaliknya, data berfrekuensi tinggi mengandungi maklumat yang
lebih banyak mengenai pasaran saham di samping berupaya mencerminkan kemeruapan
pasaran saham dengan lebih tepat. Oleh itu, kajian ini bertujuan untuk membandingkan
kebersandaran antara pulangan lima-minit (atau data frekuensi tinggi) dengan
pulangan harian (atau data frekuensi rendah) bagi menentukan sama ada data-data
ini mempunyai struktur kebersandaran yang sama atau berbeza. Kedua-dua model
kopula statik dan dinamik diguna untuk memodelkan
kebersandaran masa-berubah dalam data bivariat. Sebagai
contoh berangka, data siri pulangan bivariat bagi pasaran Islam (FBMHS) dan
konvensional (KLCI) di Malaysia diguna untuk memodelkan kebersandaran data
harian dan kebersandaran data lima-minit. Keputusan kajian ini menunjukkan bahawa struktur
kebersandaran antara pulangan harian dan logaritma kemeruapan terealis 5-minit adalah berbeza dan kepelbagaian portfolio bagi pasangan
KLCI-FBMHS adalah tidak digalakkan. Akhir sekali, siri 5-minit dan model kopula
SJC dinamik masing-masing dipilih sebagai set data dan model kebersandaran
terbaik.
Kata kunci:
FBMHS; KLCI; kopula dinamik; pulangan harian; pulangan lima-minit
ABSTRACT
Studies
on dependence between stock markets are crucial because of their indications on
the process of decision-making in investment strategies. Many previous studies
measure the dependence between stock markets using static copula. However, in
recent years, dynamic copula has been used as an alternative for measuring
dependence due to its capability of capturing time-varying dependence between
stock markets. Many copula studies have been focusing on examining the
correlation of the bivariate data of daily, or weekly, or monthly returns to
explain the co-movement between financial markets and for possible financial
directions on portfolio management. However, information of low-frequency data
is unable to accommodate large-scale trading activities. On the other hand,
high frequency data contains more information about the stock market and has
the ability to reflect stock market volatility more accurately. Therefore, this
study aims to compare the dependence of the five-minutes returns (or
high-frequency data) with the daily returns (or low-frequency data) to
determine whether these data have similar or different dependence structures.
Both static and dynamic copula models are utilized to capture the existence of
time-varying dependence of the bivariate data. For numerical examples, the bivariate
returns series of the Islamic (FBMHS) and conventional (KLCI) stock markets in
Malaysia are utilized to model the dependence of the daily data and the
dependence of the five-minute data. Findings of this paper
shows that the structure of dependency between daily returns and 5-minute
logarithmic realized variance are different, and portfolio diversification
between KLCI-FBMHS pair is not advisable. Finally, the 5-minute series and dynamic SJC copula model
are chosen as the best data set and the best dependency model, respectively.
Keywords:
Daily returns; dynamic copula; FBMHS; five-minutes returns; KLCI
REFERENCES
Ab Razak,
R. & Ismail, N. 2019. Dependence modeling and portfolio risk estimation
using GARCH-copula approach. Sains
Malaysiana 48(7): 1547-1555.
Ab Razak,
R. & Ismail, N. 2014. Dependence measures in Malaysian stock market. Malaysian Journal of Mathematical Sciences 8(S): 109-118.
Ab Razak,
R., Ismail, N. & Aridi, N.A. 2016. Is Islamic stock market no different
than conventional stock market? An evidence from Malaysia. International Business Management 10(17):
3914-3920.
Aminuddin,
N.H., Ab Razak, R. & Ismail, N. 2018a. Dependence measure of daily versus
weekly returns. International Journal of
Engineering & Technology 7(3.20): 329-333.
Aminuddin,
N.H., Ab Razak, R. & Ismail, N. 2018b. Dependence modelling using GARCH,
EGARCH, and copula models: A case study on Malaysia stock markets. Asia
Proceedings of Social Sciences, The 4th International Conference 2018
(AIC 2018) 2: 55-59.
Aussenegg,
W. & Cech, C. 2008. Simple time-varying copula estimation.
http://ssrn.com/abstract=1313714. Diakses pada14
Disember 2016.
Boubaker,
H. & Sghaier, N. 2016. Markov-switching time-varying copula modeling of
dependence structure between oil and GCC stock markets. Open Journal of Statistics 6: 565-589.
Cheong,
C.W., Cherng, L.M., Mohamed Isa, N. & Hoong, P.K. 2017. The HARX-GJR-GARCH
skewed-t multipower realized volatility modelling for S&P 500. Sains Malaysiana 46(1): 107-116.
Chin,
W.C., Lee, M.C. & Yap, G.L.C. 2016. Modelling financial market volatility
using asymmetric-skewed-ARFIMAX and HARX Mmodels. Inzinerine Ekonomika-Engineering Economics 27(4): 373-381.
Cubillos-Rocha,
J.S., Gomez-Gonzalez, J.E. & Melo-Velandia, L.F. 2019. Detecting exchange
rate contagion using copula functions. North
American Journal of Economics and Finance 47: 13-22.
Dong, T.,
Yang, B. & Tian, T. 2015. Volatility analysis of Chinese stock market using
high-frequency financial big data. https://ieeexplore.ieee.org/document/7463815. Diakses pada30 Ogos 2018.
Embrechts,
P., McNeil, A. & Straumann, D. 2002. Correlation and Dependence in Risk
Management: Properties
and Pitfalls, in Risk Management: Value at Risk and Beyond. Cambridge:
Cambridge University Press.
Hammoudeh,
S., Mensi, W., Reboredo, J.C. & Nguyen, D.K. 2014. Dynamic dependence of
the global Islamic equity index with global conventional equity market indices
and risk factors. Pacific-Basin Finance
Journal 30: 189-206.
Hussain,
S.I. & Li, S. 2018. The dependence structure between Chinese and other
major stock markets using extreme values and copulas. International Review of Economics and Finance 56: 1-17.
Joe, H.
1997. Multivariate Models
and Dependence Concepts. New York: Chapman and Hall.
Kara,
E.K. & Kemaloglu, A. 2016. Portfolio optimization of dynamic copula models
for dependent financial data using change point approach. Communications 65(2): 175-188.
Karmakar,
M. & Paul, S. 2018. Intraday portfolio risk management using VaR and CVaR: A CGARCH-EVT-copula approach. International Journal of Forecasting 35(2): 699-709.
Liew,
R.Q. & Wu, Y. 2013. Pairs trading: A copula approach. Journal of Derivatives & Hedge Funds 19(1): 12-30.
McNeil,
A.J., Frey, R. & Embrechts, P. 2005. Quantitative Risk Management: Concepts, Techniques
and Tools. New Jersey: Princeton University Press.
Messaoud,
S.B. & Aloui, C. 2015. Measuring risk of portfolio: GARCH-copula model. Journal of Economic Integration 30(1):
172-205.
Mokni, K.
& Youssef, M. 2019. Measuring persistence of dependence between crude oil
prices and GCC stock markets: A copula approach. The Quarterly Review of
Economics and Finance 72: 14-33.
Necula,
C. 2010. Modeling the dependency strucuture of stock index returns using a
copula function approach. Romanian
Journal of Economic Forecasting 13(3): 93-107.
Nelson,
R.B. 2006. An Introduction to Copulas.
New York: Springer.
Patton,
A.J. 2006. Modelling asymmetric exchange rate dependence. International Economic Review 47(2): 527-556.
Reuters,
T. 2017. State of the Global Islamic Economy Report 2017/2018. https://www.slideshare.net/EzzedineGHLAMALLAH/state-of-the-global-islamic-economy-20172018. Diakses pada25 Jun 2019.
Salma, J.
2015. Crude oil price uncertainty and stock markets in Gulf corporation
countries: A VaR-GARCH copula model. Global Journal of
Management and Business Research: C Finance 15(10): 28-38.
Shamiri,
A., Hamzah, N.A. & Pirmoradian, A. 2011. Tail dependence estimate in
financial market risk management: Clayton-Gumbel copula approach. Sains Malaysiana 40(8): 927-935.
Thongkamhong,
P., Sirisrisakulchai, J. & Liu, J. 2017. Portfolio optimization under
market upturn and market downturn: Empirical evidence from the ASEAN-5. 3rd International Conference on Management Economics and Social Sciences.
Organized by Innovative Research Publication. Pattaya, Thailand. 8-9 July.
Ugurlu,
E., Thalassinos, E. & Muratoglu, Y. 2014. Modeling volatility in the stock
markets using GARCH models: European emerging economies and Turkey. International Journal in Economics and
Business Administration II(3): 72-87.
Xiao, Y.
2020. The risk spillovers from the Chinese stock market to major East Asian
stock markets: A MSGARCH-EVT-copula approach. International
Review of Economics and Finance 65: 173-186.
*Corresponding
author; email: nurulhanis.fst@gmail.com
|