Sains Malaysiana 49(8)(2020): 2023-2034

http://dx.doi.org/10.17576/jsm-2020-4908-25

 

Ukuran Kebersandaran bagi Pulangan Lima-Minit Berbanding Pulangan Harian menggunakan Kopula Statik dan Dinamik

(Dependence Measure of Five-Minutes Returns Compared to Daily Returns using Static and Dynamic Copulas)

 

NURUL HANIS AMINUDDIN JAFRY1*, RUZANNA AB RAZAK2 & NORISZURA ISMAIL1

 

1Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Economics and Quantitative Methods Unit, Faculty of Management, Multimedia University, 63100 Cyberjaya, Selangor Darul Ehsan, Malaysia

 

Received: 22 January 2020/Accepted: 29 April 2020

 

ABSTRAK

Kajian tentang kebersandaran antara pasaran saham adalah penting kerana kemampuannya memberi petunjuk dalam proses membuat-keputusan bagi mengatur strategi pelaburan. Kebanyakan kajian lepas mengukur kebersandaran antara pasaran saham menggunakan kopula statik. Walau bagaimanapun, sejak beberapa tahun kebelakangan ini, kopula dinamik telah digunakan sebagai kaedah alternatif bagi mengukur kebersandaran kerana keupayaannya untuk memodelkan kebersandaran masa-berubah antara pasaran saham. Kebanyakan kajian berkaitan kopula lebih tertumpu kepada korelasi data bivariat bagi pulangan harian atau mingguan atau bulanan untuk menjelaskan pergerakan bersama antara pasaran kewangan dan sebagai petunjuk kewangan bagi aspek pengurusan portfolio. Namun begitu, maklumat daripada data berfrekuensi rendah tidak lagi mampu untuk menampung aktiviti perdagangan berskala besar. Sebaliknya, data berfrekuensi tinggi mengandungi maklumat yang lebih banyak mengenai pasaran saham di samping berupaya mencerminkan kemeruapan pasaran saham dengan lebih tepat. Oleh itu, kajian ini bertujuan untuk membandingkan kebersandaran antara pulangan lima-minit (atau data frekuensi tinggi) dengan pulangan harian (atau data frekuensi rendah) bagi menentukan sama ada data-data ini mempunyai struktur kebersandaran yang sama atau berbeza. Kedua-dua model kopula statik dan dinamik diguna untuk memodelkan kebersandaran masa-berubah dalam data bivariat. Sebagai contoh berangka, data siri pulangan bivariat bagi pasaran Islam (FBMHS) dan konvensional (KLCI) di Malaysia diguna untuk memodelkan kebersandaran data harian dan kebersandaran data lima-minit. Keputusan kajian ini menunjukkan bahawa struktur kebersandaran antara pulangan harian dan logaritma kemeruapan terealis 5-minit adalah berbeza dan kepelbagaian portfolio bagi pasangan KLCI-FBMHS adalah tidak digalakkan. Akhir sekali, siri 5-minit dan model kopula SJC dinamik masing-masing dipilih sebagai set data dan model kebersandaran terbaik.

 

Kata kunci: FBMHS; KLCI; kopula dinamik; pulangan harian; pulangan lima-minit

 

ABSTRACT

Studies on dependence between stock markets are crucial because of their indications on the process of decision-making in investment strategies. Many previous studies measure the dependence between stock markets using static copula. However, in recent years, dynamic copula has been used as an alternative for measuring dependence due to its capability of capturing time-varying dependence between stock markets. Many copula studies have been focusing on examining the correlation of the bivariate data of daily, or weekly, or monthly returns to explain the co-movement between financial markets and for possible financial directions on portfolio management. However, information of low-frequency data is unable to accommodate large-scale trading activities. On the other hand, high frequency data contains more information about the stock market and has the ability to reflect stock market volatility more accurately. Therefore, this study aims to compare the dependence of the five-minutes returns (or high-frequency data) with the daily returns (or low-frequency data) to determine whether these data have similar or different dependence structures. Both static and dynamic copula models are utilized to capture the existence of time-varying dependence of the bivariate data. For numerical examples, the bivariate returns series of the Islamic (FBMHS) and conventional (KLCI) stock markets in Malaysia are utilized to model the dependence of the daily data and the dependence of the five-minute data. Findings of this paper shows that the structure of dependency between daily returns and 5-minute logarithmic realized variance are different, and portfolio diversification between KLCI-FBMHS pair is not advisable. Finally, the 5-minute series and dynamic SJC copula model are chosen as the best data set and the best dependency model, respectively.

 

Keywords: Daily returns; dynamic copula; FBMHS; five-minutes returns; KLCI

 

REFERENCES

Ab Razak, R. & Ismail, N. 2019. Dependence modeling and portfolio risk estimation using GARCH-copula approach. Sains Malaysiana 48(7): 1547-1555.

Ab Razak, R. & Ismail, N. 2014. Dependence measures in Malaysian stock market. Malaysian Journal of Mathematical Sciences 8(S): 109-118.

Ab Razak, R., Ismail, N. & Aridi, N.A. 2016. Is Islamic stock market no different than conventional stock market? An evidence from Malaysia. International Business Management 10(17): 3914-3920.

Aminuddin, N.H., Ab Razak, R. & Ismail, N. 2018a. Dependence measure of daily versus weekly returns. International Journal of Engineering & Technology 7(3.20): 329-333.

Aminuddin, N.H., Ab Razak, R. & Ismail, N. 2018b. Dependence modelling using GARCH, EGARCH, and copula models: A case study on Malaysia stock markets. Asia Proceedings of Social Sciences, The 4th International Conference 2018 (AIC 2018) 2: 55-59.

Aussenegg, W. & Cech, C. 2008. Simple time-varying copula estimation. http://ssrn.com/abstract=1313714. Diakses pada14 Disember 2016.

Boubaker, H. & Sghaier, N. 2016. Markov-switching time-varying copula modeling of dependence structure between oil and GCC stock markets. Open Journal of Statistics 6: 565-589.

Cheong, C.W., Cherng, L.M., Mohamed Isa, N. & Hoong, P.K. 2017. The HARX-GJR-GARCH skewed-t multipower realized volatility modelling for S&P 500. Sains Malaysiana 46(1): 107-116.

Chin, W.C., Lee, M.C. & Yap, G.L.C. 2016. Modelling financial market volatility using asymmetric-skewed-ARFIMAX and HARX Mmodels. Inzinerine Ekonomika-Engineering Economics 27(4): 373-381.

Cubillos-Rocha, J.S., Gomez-Gonzalez, J.E. & Melo-Velandia, L.F. 2019. Detecting exchange rate contagion using copula functions. North American Journal of Economics and Finance 47: 13-22.

Dong, T., Yang, B. & Tian, T. 2015. Volatility analysis of Chinese stock market using high-frequency financial big data. https://ieeexplore.ieee.org/document/7463815. Diakses pada30 Ogos 2018.

Embrechts, P., McNeil, A. & Straumann, D. 2002. Correlation and Dependence in Risk Management: Properties and Pitfalls, in Risk Management: Value at Risk and Beyond. Cambridge: Cambridge University Press.

Hammoudeh, S., Mensi, W., Reboredo, J.C. & Nguyen, D.K. 2014. Dynamic dependence of the global Islamic equity index with global conventional equity market indices and risk factors. Pacific-Basin Finance Journal 30: 189-206.

Hussain, S.I. & Li, S. 2018. The dependence structure between Chinese and other major stock markets using extreme values and copulas. International Review of Economics and Finance 56: 1-17.

Joe, H. 1997. Multivariate Models and Dependence Concepts. New York: Chapman and Hall.

Kara, E.K. & Kemaloglu, A. 2016. Portfolio optimization of dynamic copula models for dependent financial data using change point approach. Communications 65(2): 175-188.

Karmakar, M. & Paul, S. 2018. Intraday portfolio risk management using VaR and CVaR: A CGARCH-EVT-copula approach. International Journal of Forecasting 35(2): 699-709.

Liew, R.Q. & Wu, Y. 2013. Pairs trading: A copula approach. Journal of Derivatives & Hedge Funds 19(1): 12-30.

McNeil, A.J., Frey, R. & Embrechts, P. 2005. Quantitative Risk Management: Concepts, Techniques and Tools. New Jersey: Princeton University Press.

Messaoud, S.B. & Aloui, C. 2015. Measuring risk of portfolio: GARCH-copula model. Journal of Economic Integration 30(1): 172-205.

Mokni, K. & Youssef, M. 2019. Measuring persistence of dependence between crude oil prices and GCC stock markets: A copula approach. The Quarterly Review of Economics and Finance 72: 14-33.

Necula, C. 2010. Modeling the dependency strucuture of stock index returns using a copula function approach. Romanian Journal of Economic Forecasting 13(3): 93-107.

Nelson, R.B. 2006. An Introduction to Copulas. New York: Springer.

Patton, A.J. 2006. Modelling asymmetric exchange rate dependence. International Economic Review 47(2): 527-556.

Reuters, T. 2017. State of the Global Islamic Economy Report 2017/2018. https://www.slideshare.net/EzzedineGHLAMALLAH/state-of-the-global-islamic-economy-20172018. Diakses pada25 Jun 2019.

Salma, J. 2015. Crude oil price uncertainty and stock markets in Gulf corporation countries: A VaR-GARCH copula model. Global Journal of Management and Business Research: C Finance 15(10): 28-38.

Shamiri, A., Hamzah, N.A. & Pirmoradian, A. 2011. Tail dependence estimate in financial market risk management: Clayton-Gumbel copula approach. Sains Malaysiana 40(8): 927-935.

Thongkamhong, P., Sirisrisakulchai, J. & Liu, J. 2017. Portfolio optimization under market upturn and market downturn: Empirical evidence from the ASEAN-5. 3rd International Conference on Management Economics and Social Sciences. Organized by Innovative Research Publication. Pattaya, Thailand. 8-9 July.

Ugurlu, E., Thalassinos, E. & Muratoglu, Y. 2014. Modeling volatility in the stock markets using GARCH models: European emerging economies and Turkey. International Journal in Economics and Business Administration II(3): 72-87.

Xiao, Y. 2020. The risk spillovers from the Chinese stock market to major East Asian stock markets: A MSGARCH-EVT-copula approach. International Review of Economics and Finance 65: 173-186.

 

*Corresponding author; email: nurulhanis.fst@gmail.com 

 

 

 

previous