Sains Malaysiana 50(11)(2021):
3395-3404
http://doi.org/10.17576/jsm-2021-5011-23
Performance Evaluation of PDMS or PEBAX- Coated Polyetherimide Membrane for Oxygen/Nitrogen Separation
(Penilaian Prestasi PDMS atau PEBAX- Bersalut Membran Polieterimida untuk Pemisahan Oksigen/Nitrogen Separation)
KOK CHUNG CHONG1*,
SOON ONN LAI1, HUI SAN THIAM1, SHEE KEAT MAH1,
WOEI JYE LAU2 & AHMAD FAUZI ISMAIL2
1Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras,
43000 Kajang, Selangor Darul Ehsan, Malaysia
2Advanced Membrane Technology Research
Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia
Received: 25 May 2020/Accepted: 8 March 2021
ABSTRACT
Since the industrial revolution era, the Earth was suffering
from serious air pollution. Millions of people are now suffering from indoor
air pollution related diseases, especially in the industrialized countries such
as China. One method to improve the indoor air quality is by oxygen
enhancement. Membrane technology has been a key research over the past decades
due to its low energy usage, minimum chemical consumption as well as small
setting up layout. In this study, polyetherimide (PEI) membranes coated with polydimethylsiloxane (PDMS) or poly(ether
block amide) (PEBAX) at different concentration (1, 3 or 5 wt%)
were used to evaluate the oxygen/nitrogen gas separation. Prior to the gas
permeation study, the membranes were characterized using scanning electron
microscope (SEM) for morphology observation and surface elemental analysis by
energy dispersive X-ray spectroscope (EDX). The morphology of the
self-fabricated PEI membranes is composed of a thin and dense structure
supported by the finger-like structure. The results obtained from
oxygen/nitrogen separation studies shows membrane coated with 3 wt% PDMS yield a good separation results, exhibiting an
improvement of oxygen and nitrogen permeance by 28.2%
and 24.9%, selectivity by 10.4% (up to 5.08) relative to the base PEI membrane.
Meanwhile, the 3 wt% PEBAX-coated PEI membrane only
achieved selectivity of 3.56. The PDMS-coated PEI membrane yield a better
separation performance attributed to the fact that PDMS coating on the hollow
fiber membrane improve the surface morphology by reducing the defects.
Keywords: Gas separation; nitrogen; oxygen;
polydimethylsiloxane; polyetherimide; poly(ether block amide)
ABSTRAK
Sejak era revolusi perindustrian, Bumi mengalami pencemaran udara yang serius. Berjuta-juta orang kini menderita penyakit berkaitan pencemaran udara dalaman, terutamanya mereka yang tinggal di negara perindustrian seperti China. Salah satu kaedah untuk meningkatkan kualiti udara dalaman adalah dengan peningkatan oksigen. Teknologi membran telah menjadi penyelidikan utama selama beberapa dekad yang lalu kerana penggunaan tenaga yang rendah, kadar penggunaan bahan kimia yang minimum dan menggunakan ruang yang kecil. Dalam kajian ini, membran polieterimida (PEI)
yang disalut dengan polidimetilsiloksan (PDMS) atau poli(eter blok amida)
(PEBAX) pada kepekatan yang berbeza (1, 3 atau 5 wt%) digunakan untuk menilai pemisahan gas oksigen/nitrogen. Sebelum kajian penelapan gas, membran dicirikan menggunakan mikroskop elektron imbasan (SEM) untuk pemerhatian morfologi dan analisis unsur permukaan dengan spektroskopi sinar-X penyebaran tenaga (EDX). Morfologi membran PEI buatan sendiri terdiri daripada struktur nipis dan padat yang disokong oleh struktur seperti jari. Hasil penyerapan gas menunjukkan bahawa membran yang dilapisi dengan 3% PDMS adalah membran yang terbaik dengan kadar peningkatan oksigen dan nitrogen sebanyak 28.2% dan 24.9% serta peningkatan kepilihan sebanyak 10.4% (hingga 5.08) berbanding dengan membran PEI yang tidak bersalut. Sementara itu, membran PEI bersalut PEBAX 3% hanya mencapai kepilihan sebanyak 3.56. Membran PEI yang disalut PDMS menghasilkan prestasi pemisahan yang lebih baik disebabkan oleh fakta bahawa lapisan PDMS dapat memperbaiki morfologi permukaan membran dengan mengurangkan kecacatan.
Kata kunci: Nitrogen; oksigen; pemisahan gas; polieterimida; polidimetilsiloksan; poli(eter blok amida)
REFERENCES
Al-Horr, Y., Arif,
M., Katafygiotou, M., Mazroei,
A., Kaushik, A. & Elsarrag, E. 2016. Impact of
indoor environmental quality on occupant well-being and comfort: A review of
the literature. International
Journal of Sustainability Built Environment 5(1): 1-11.
Baskar, P. & Senthilkumar, A. 2016.
Effects of oxygen enriched combustion on pollution and performance
characteristics of a diesel engine. International
Journal of Science and Technology 19(1): 438-443.
Belaissaoui, B., Le Moullec, Y., Hagi, H. & Favre, E. 2014. Energy efficiency of oxygen
enriched air production technologies: Cryogeny vs
membranes. Energy Procedia 63:
497-503.
Chong, K.C., Lai, S.O., Lau, W.J., Thiam,
H.S., Ismail, A.F. & Roslan, R.R. 2018.
Preparation, characterization, and performance evaluation of polysulfone hollow fiber membrane with PEBAX or PDMS
coating for oxygen enhancement process. Polymers 10(2): 126.
Chong, K.C., Lai, S.O., Lau, W.J., Thiam,
H.S., Ismail, A.F. & Zulhairun, A.K. 2017.
Fabrication and characterization of polysulfone membranes coated with polydimethysiloxane for oxygen
enrichment. Aerosol Air Quality
Research 17(11): 2735-2742.
Chong, K.C., Lai, S.O., Lee, K.M., Lau, W.J., Ismail, A.F.
& Ooi, B.S. 2014. Characteristic and performance
of polyvinylidene fluoride membranes blended with
different additives in direct contact membrane distillation. Desalination Water Treatment 54(12):
3218-3226.
Esposito, E., Clarizia, G.,
Bernardo, P., Jansen, J., Sedláková, Z. & Izák, P. 2015. Pebax®/PAN hollow
fiber membranes for CO2/CH4 separation. Chemical Engineering Process 94: 53-61.
Gordon, S., Mortimer, K., Grigg,
J. & Balmes, J. 2017. In control of ambient and
household air pollution - how low should we go? Lancet Respiratory Medicine 17: 1-2.
Jamil, N., Othman, N.H., Shahrudin,
M.Z., Razlan, M.R.M., Alias, N.H., Marpani, F., Lau, W.J., Goh, P.S. & Ismail, A.F. 2020.
Effects of PEBAX coating concentrations on CO2/CH4 separation of RGO/ZIF-8 PES membranes. Jurnal Teknologi 82(2): 51-60.
Karar, H.W. & Hamdi, A. 2016.
Analysis of the factors that affect medical oxygen demand an empirical study at
government Hospitals in Khartoum State. IOSR Journal of Mathematics 12: 22-26.
Khalilinejad, I., Sanaeepur, H. & Kargari, A. 2015. Preparation of poly(ether-6-block
amide)/PVC thin film composite membrane for CO2 separation: Effect
of top layer thickness and operating parameters. Journal of Membrane Science Research 1: 124-129.
Khayet, M., García-Payo, M., Qusay, F. & Zubaidy, M. 2009.
Structural and performance studies of poly(vinyl
chloride) hollow fiber membranes prepared at different air gap lengths. Journal of Membrane Science 330(1-2):
30-39.
Kim, K., Ingole, P., Kim, J. &
Lee, H. 2013. Separation performance of PEBAX/PEI hollow fiber composite
membrane for SO2/CO2/N2 mixed gas. Chemical Engineering Journal 233:
242-250.
Liu, L., Chakma, A. & Feng, X. 2005. CO2/N2 separation by poly(ether block amide) thin film hollow
fiber composite membranes. Industrial
& Engineering Chemical Research 44(17): 6874-6882.
Moaddeb, M. & Koros, W. 1997.
Occlusion of pores of polymeric membranes with colloidal silica. Journal of Membrane Science 136(1-2):
273-277.
Moradi, M., Pourafshari, C.M., Noie, S., Hesampour, M. & Mänttäri, M. 2017. PDMS coating of used TFC-RO membranes
for O2/N2 and CO2/N2 gas separation
applications. Polymer Testing 63: 101-109.
Pokhrel, J., Bhoria, N., Anastasiou, S., Tsoufis, T., Gournis, D., Romanos, G. & Karanikolos, N. 2018. CO2 adsorption behavior of
amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites
under dry and wet conditions. Microporous
and Mesoporous Materials 267: 53-67.
Rackley, S.A. 2010. Carbon
Capture and Storage. 1st ed. Massachusetts: Butterworth-Heinemann.
Rezaei, A.M., Ismail, A.F., Matsuura, T., Ng, B. & Abdullah,
M. 2015. Fabrication and characterization of porous polyetherimide/montmorillonite
hollow fiber mixed matrix membranes for CO2 absorption via membrane
contactor. Chemical Engineering
Journal 269: 51-59.
Robeson, L. 2008. The upper bound revisited. Journal of Membrane Science 320(1-2):
390-400.
Robeson, L., Liu, Q., Freeman, B.
& Paul, D. 2015. Comparison of transport properties of rubbery and glassy
polymers and the relevance to the upper bound relationship. Journal of Membrane Science 476:
421-431.
Sanders, D., Smith, Z., Guo, R.,
Robeson, L., McGrath, J. & Paul, D. 2013. Energy-efficient polymeric gas
separation membranes for a sustainable future: A review. Polymer 54(18): 4729-4761.
Santos, J., Cruz, P., Regala, T., Magalhães, F. & Mendes, A. 2007. High-purity oxygen
production by pressure swing adsorption. Industrial & Engineering Chemistry Research 46(2):
591-599.
Sircar, S. & Kratz, W. 1989. Oxygen
production by pressure swing adsorption. Separation Science and Technology 24(5-6): 429-440.
Smith, A. & Klosek, J. 2001. A
review of air separation technologies and their integration with energy conversion
processes. Fuel Process Technology 70(2):
115-134.
Wahab, M., Ismail, A.F. & Shilton,
S. 2012. Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers. Separation and Purification Technology 86: 41-48.
Wang, D. 2000. Porous PVDF asymmetric hollow fiber membranes
prepared with the use of small molecular additives. Journal of Membrane Science 178(1-2): 13-23.
Wang, D., Li, K. & Teo, W. 1998. Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas
separation. Journal of Membrane
Science 138(2): 193-201.
Wang, L., Li, Y., Li, S., Ji, P. & Jiang, C. 2014.
Preparation of composite poly(ether block amide)
membrane for CO2 capture. Journal
of Energy Chemistry 23(6): 717-725.
Zhou, Y., Chen, W., Wang, P. & Zhang, Y. 2018. Dense and
thin 13X membranes on porous α-Al2O3 tubes:
Preparation, structure and deep purification of oxygenated compounds from
gaseous olefin flow. RSC Advance 8(25): 13728-13738.
Zuo, J., Ji, W., Ben, Y., Hassan, M., Fan, W. & Bates, L.
2018. Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: Case study in Beijing. Environmental Pollution 240:
839-847.
*Corresponding author; email: chongkc@utar.edu.my
|