Sains Malaysiana 50(8)(2021): 2229-2240

http://doi.org/10.17576/jsm-2021-5008-08

 

Viability of Lactobacillus plantarum TISTR 2083 in Protectant during Low-Temperature Drying and Storage

(Kelangsungan Lactobacillus plantarum TISTR 2083 dalam Pelindung semasa Pengeringan pada Suhu Rendah dan Penyimpanan)

 

ABDULLAH AL MAMUN1, PAYAP MASNIYOM2 & JARUWAN MANEESRI1*

 

1Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand

 

2Department of Technology and Industry, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand

 

Received: 25 August 2020/Accepted: 20 December 2020

 

ABSTRACT

Low-temperature drying was applied as simple and low cost drying technique for the production of dried Lactobacillus plantarum TISTR 2083, which was isolated from traditional starter of Ka-nom Tuay-fu. To improve the survival of L. plantarum TISTR 2083 during drying and storage, five different protectants and two carrier materials were investigated. These include sucrose, trehalose, maltodextrin, skim milk, and L-glutamate sodium salt (L-GSS) as protectant and rice starch and rice flour as carrier material. Whereas, skim milk as protectant with rice starch resulted in higher viable cell (8.71 log CFU/g) after drying by hot air oven at 40 °C. Different concentration 5, 10, and 15% (w/v) skim milk also investigated to check the effect of skim milk concentration on cell viability. L. plantarum TISTR 2083 starter powder was in different storage conditions to check the storage stability. After 90 days of storage, starter powder stored at 4 °C with silica gel and without silica gel had more than 80% survival rate, while there was no viable cell that stored in room temperature with silica gel. The result showed the production and storage conditions of high viability L. plantarum TISTR 2083, which can be used as starter culture for further fermented product development and as probiotic.

Keywords: Lactobacillus plantarum; low-temperature drying; protective agent; starter culture

 

ABSTRAK

Pengeringan suhu rendah digunakan sebagai teknik pengeringan yang mudah dan melibatkan kos yang rendah untuk penghasilanLactobacillus plantarum TISTR 2083 jenis kering, yang dipencil daripada pemula tradisi Ka-nom Tuay-fu. Sehubungan dengan itu, bagi mempertingkat ketahanan selL. plantarum TISTR 2083 semasa pengeringan dan penyimpanan, lima bahan pelindung dan dua bahan pembawa telah digunakan dalam uji kaji ini. Ini termasuk sukrosa, trehalosa, maltodekstrin, susu skim dan L-GSS sebagai pelindung. Pati beras dan tepung beras digunakan sebagai bahan pembawa. Manakala, susu skim yang digunakan sebagai bahan pelindung dengan pati beras menghasilkan sel yang lebih baik (8.71 log CFU/g) setelah dikeringkan dengan ketuhar udara panas pada suhu 40 °C. Kepekatan susu skim yang berbeza 5, 10 dan 15% (w/v) diuji untuk memeriksa kesan kepekatan susu skim terhadap ketahanan sel. Serbuk pemula L. plantarum TISTR 2083 berada dalam keadaan penyimpanan yang berbeza untuk memeriksa kestabilan penyimpanan. Setelah 90 hari penyimpanan, serbuk pemula yang disimpan pada suhu 4 °C, dengan gel silika dan tanpa gel silika mempunyai kadar kelangsungan hidup lebih daripada 80%, sementara tiada sel yang dapat digunakan apabila disimpan dalam gel silika pada suhu bilik. Hasil kajian menunjukkan penghasilan dan keadaan penyimpanan berketahanan tinggiL. plantarum TISTR 2083, boleh digunakan sebagai kultur pemula fermentasi pada masa hadapan dan sebagai probiotik.

Kata kunci: Agen pelindung; kultur pemula: Lactobacillus plantarum; pengeringan suhu rendah

 

REFERENCES

Alonso, S. 2016. Novel preservation techniques for microbial cultures. In Series on Novel Food Fermentation Technologies, edited by Ojha, K.S. & Tiwari, B.K. Switzerland: Springer International Publishing. pp. 7-33.

AOAC. 2000. Official Methods of Analysis. The Association of Official Analysis Chemistry (AOAC).

Arslan, S., Erbas, M., Tontul, I. & Topuz, A. 2015. Microencapsulation of probiotic Saccharomyces cerevisae var. boulardii with different wall materials by spray drying. Food Science and Technology 63(1): 685-690.

Barbosa, J., Borges, S., Amorim, M., Pereira, M.J., Oliveira, A., Pintado, M.E. & Teixeira, P. 2015. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. Journal of Functional Foods 17: 340-351.

Brachkova, M.I., Duarte, A. & Pinto, J.F. 2009. Evaluation of the viability of Lactobacillus spp. after the production of different solid dosage forms. Journal of Pharmaceutical Sciences 98(9): 3329-3339.

Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X. & Gibbs, P. 2004a. Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Biotechnology Progress 20(1): 248-254.

Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X. & Gibbs, P. 2004b. Relevant factors for the preparation of freeze-dried lactic acid bacteria. International Dairy Journal 14(10): 835-847.

Carvalho, A.S., Silva, J.H., Teixera, P., Malcata, F.X. & Gibbs, P. 2003. Impedimetric method for estimating the residual activity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. International Dairy Journal 13(6): 463-468.

Champagne, C.C., Mondou, F., Raymond, Y. & Roy, D. 1996. Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Research International 29(5-6): 555-562.

De Vries, M.C., Vaughan, E.E., Kleerebezem, M. & de Vos, W.M. 2005. Lactobacillus plantarum - survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal 16(9): 1018-1028.

Dimitrellou, D., Tsaousi, K., Kourkoutas, Y., Panas, P., Kanellaki, M. & Koutinas, A.A. 2008. Fermentation efficiency of thermally dried immobilized kefir on casein as starter culture. Process Biochemistry 43(12): 1323-1329.

Edward, V.A., Huch, M., Dortu, C., Thonart, P., Egounlety, M., Van Zyl, P.J., Singh, S., Holzapfel, W.H. & Franz, C.M.A.P. 2011. Biomass production and small-scale testing of freeze-dried lactic acid bacteria starter strains for cassava fermentations. Food Control 22(3-4): 389-395.

Guergoletto, K.B., Busanello, M. & Garcia, S. 2017. Influence of carrier agents on the survival of Lactobacillus reuteri LR92 and the physicochemical properties of fermented juçara pulp produced by spray drying. Food Science and Technology 80: 321-327.

Holzapfel, W.H. 2002. Appropriate starter culture technologies for small-scale fermentation in developing countries. International Journal of Food Microbiology 75(3): 197-212.

Hou, B., Wang, H., Yan, T., Shan, S., Zhou, W., Zhang, L., Man, C., Deng, Y. & Jiang, Y. 2016. Production for high-vitality starter culture of Lactobacillus plantarum NDC 75017 by high cell-density cultivation and low-temperature vacuum drying. Food Science and Technology Research 22(4): 519-527.

Iaconelli, C., Lemetais, G., Kechaou, N., Chain, F., Bermúdez-Humarán, L.G., Langella, P., Gervais, P. & Beney, L. 2015. Drying process strongly affects probiotics viability and functionalities. Journal of Biotechnology 214: 17-26.

Krzywonos, M. & Eberhard, T. 2011. High density process to cultivate Lactobacillus plantarum biomass using wheat stillage and sugar beet molasses. Electronic Journal of Biotechnology 14(2): 1-9.

Lapsiri, W., Bhandari, B. & Wanchaitanawong, P. 2012: Viability of Lactobacillus plantarum TISTR 2075 in different protectants during spray drying and storage. Drying Technology: An International Journal 30(13): 1407-1412.

Maneesri, J., Masniyom, P. & Liming, M. 2018. Survival of Candida tropicalis and Lactobacillus plantarum starter culture after using protective agent and drying. International Food Research Journal 25(4): 1655-1660.

Murakami, S., Kuramochi, M., Koda, T., Nishio, T. & Nishioka, A. 2016. Relationship between rice flour particle sizes and expansion ratio of pure rice bread. Journal of Applied Glycoscience 63(1): 19-22.

Nualkaekul, S., Deepika, G. & Charalampopoulos, D. 2012. Survival of freeze dried Lactobacillus plantarum in instant fruit powders and reconstituted fruit juices. Food Research International 48(2): 627-633.

Romano, N., Tymczyszyn, E., Mobili, P. & Gomez-Zavaglia, A. 2016. Prebiotics as protectants of lactic acid bacteria. In Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion, edited by Watson, R.R. & Preedy, V.R. Amsterdam: Elsevier. pp. 155-163.

Santivarangkna, C., Higl, B. & Forest, P. 2008. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiology 25(3): 429-441.

Seddik, H.A., Bendali, F., Gancel, F., Fliss, I., Spano, G. & Drider, D. 2017. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics and Antimicrobial Proteins 9(2): 111-122.

Siezen, R.J. & van Hylckama Vlieg, J.E. 2011. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microbial Cell Factories 10(1): 1-13.

Strasser, S., Neureiter, M., Geppl, M., Braun, R. & Danner, H. 2009. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. Journal of Applied Microbiology 107(1): 167-177.

Stefanello, R.F., Nabeshima, E.H., Iamanaka, B.T., Ludwig, A., Fries, L.L.M., Bernardi, A.O. & Copetti, M.V. 2019. Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Research International 115: 90-94.

Tan, D.T., Poh, P.E. & Chin, S.K. 2018. Microorganism preservation by convective air-drying - A review. Drying Technology: An International Journal 36(7): 764-779.

Tan, L.W., Ibrahim, M.N., Kamil, R. & Taip, F.S. 2011. Empirical modeling for spray drying process of stick and non-stick products. Procedia Food Science 1: 690-697.

Taskila, S. 2017. Industrial production of starter cultures. In Starter Culture in Food Production, edited by Speranza, B., Bevilacqua, A., Corbo M.R. & Sinigaglia, M. New Jersey: John Wiley & Sons. pp. 79-100.

Wani, A.A., Singh, P., Shah, M.A., Schweiggert-Weisz, U., Gul, K. & Wani, I.A. 2012. Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties - A review. Comprehensive Reviews in Food Science and Food Safety 11(5): 417-436.

Ying, D.Y., Phoon, M.C., Sanguansri, L., Weerakkody, R., Burgar, I. & Augustin, M.A. 2010. Microencapsulated Lactobacillus rhamnosus GG powders: Relationship of powder physical properties to probiotic survival during storage. Journal of Food Science 75(9): 588-595.

Zheng, X., Fu, N., Duan, M., Woo, M.W., Selomulya, C. & Chen, X.D. 2015. The mechanisms of the protective effects of reconstituted skim milk during convective droplet drying of lactic acid bacteria. Food Research International 76(3): 478-488.

 

*Corresponding author; email: jaruwan.ma@psu.ac.th

 

 

previous