Sains Malaysiana 50(8)(2021): 2319-2328

http://doi.org/10.17576/jsm-2021-5008-15

 

Comparing the Effects of Alpha-Tocopherol and Tocotrienol Isomers on Osteoblasts hFOB 1.19 Cultured on Bovine Bone Scaffold

(Perbandingan Kesan Isomer Alfa-Tokoferol dan Tokotrienol pada Osteoblas hFOB 1.19 yang Dikultur atas Perancah Tulang Bovin)

 

NUR FARHANA MOHD FOZI1, JAMES JAM JOLLY1, CHUA KIEN HUI2, EKRAM ALIAS3, CHIN KOK YONG1 & IMA NIRWANA SOELAIMAN1*

 

1Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

3Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 3 April 2020/Accepted: 9 December 2020

 

ABSTRACT

Tocotrienol mixtures have been shown to exert anabolic actions on the skeletal system in animal studies, but it is unclear which tocotrienol isomer shows the most prominent effects. This study aims to investigate the most active tocotrienol isomers using hFOB 1.19 human osteoblasts cultured on a bovine bone scaffold. The bovine trabecular bone was sectioned, demineralised and freeze-dried to form the scaffold. hFOB 1.19 osteoblasts were cultured on the bone scaffolds in humidified condition at 37 °C and 5% carbon dioxide with vitamin E isomers (alpha-, beta-, gamma-, delta-tocotrienol and alpha-tocopherol). The cell differentiation capacity of tocotrienol isomers was investigated through morphological observation, alkaline phosphatase (ALP) activity and osteocalcin expression. Changes in the bone scaffolds were determined using histomorphometry methods. Osteoblast culture treated with gamma- and delta-tocotrienols showed a significant increase in ALP activity and osteocalcin expression. Bone structural histomorphometry analysis showed that bone scaffolds treated with gamma- and delta-tocotrienol showed significant increases in bone volume and trabecular thickness. In conclusion, gamma- and delta-tocotrienol show the most prominent bone anabolic effects by increasing osteoblast differentiation and enhancing bone microstructure.

Keywords: Bone; osteoblast; osteoporosis; tocopherol; tocotrienol

 

ABSTRAK

Campuran tokotrienol telah terbukti memberi kesan anabolik kepada sistem rangka di dalam kajian haiwan, tetapi isomer tokotrienol yang paling berkesan belum dikenal pasti. Kajian ini bertujuan mengkaji isomer tokotrienol yang paling aktif dengan menggunakan sel osteoblas manusia hFOB 1.19 yang dikultur atas tulang perancah lembu. Tulang trabekular lembu dipotong dan dikering-beku untuk membentuk perancah. Sel osteoblas hFOB 1.19 dikulturkan di atas perancah tulang dalam kelembapan 37 °C dan 5% karbon dioksida bersama isomer vitamin E (alfa-tokotrienol, beta-tokotrienol, gamma-tokotrienol, delta-tokotrienol dan alfa-tokoferol). Kapasiti pembezaan sel isomer tokotrienol dikaji melalui pemerhatian morfologi, aktiviti alkalin phosphatase (ALP) dan ekspresi osteokalsin. Perubahan struktur tulang ditentukan dengan kaedah histomorfometri. Sel osteoblas yag dirawat dengan gamma- dan delta-tokotrienol menunjukkan peningkatan aktiviti ALP dan ekspresi osteokalsin yang ketara. Tulang perancah yang dirawat dengan gamma-tokotrienol dan delta-tokotrienol mempunyai peningkatan isi padu serta ketebalan trabekular yang ketara melalui analisis histomorfometri. Secara kesimpulannya, gamma- dan delta-tokotrienol menunjukkan kesan anabolik tulang yang paling ketara dengan meningkatkan pembezaan osteoblas dan struktur seni tulang.

Kata kunci: Osteoblas; osteoporosis; tokoferol; tokotrienol; tulang

 

REFERENCES

Abdullah, A.R., Hapidin, H. & Abdullah, H. 2018. The role of semipurified fractions isolated from Quercus infectoria on bone metabolism by using hFOB 1.19 human fetal osteoblast cell model. Evidence-based Complementary and Alternative Medicine 2018: 5319528.

Abdul-Majeed, S., Mohamed, N. & Soelaiman, I.N. 2015. The use of delta-tocotrienol and lovastatin for anti-osteoporotic therapy. Life Sciences 125: 42-48.

Cejka, D., Benesch, T., Krestan, C., Roschger, P., Klaushofer, K., Pietschmann, P. & Haas, M. 2008. Effect of teriparatide on early bone loss after kidney transplantation. American Journal of Transplantation 8(9): 1864-1870.

Chin, K.Y. & Soelaiman, I.N. 2019. The role of tocotrienol in preventing male osteoporosis - A review of current evidence. International Journal of Molecular Sciences 20(6): 1355-1374.

Chin, K.Y. & Soelaiman, I.N. 2015. The biological effects of tocotrienol on bone: A review on evidence from rodent models. Drug Design, Development and Therapy 9: 2049-2061.

Chin, K.Y. & Soelaiman, I.N. 2014. Effects of annatto-derived tocotrienol supplementation on osteoporosis induced by testosterone deficiency in rats. Clinical Intervention in Aging 9: 1247-1259.

Chin, K.Y., Abdul-Majeed, S., Mohamed, N. & Soelaiman, I.N. 2017. The effects of tocotrienol and lovastatin co-supplementation on bone dynamic histomorphometry and bone morphogenetic protein-2 expression in rats with estrogen deficiency. Nutrients 9(2): 143-154.

Chin, K.Y., Mo, H. & Soelaiman, I.N. 2013. A review of the possible mechanisms of action of tocotrienol - A potential antiosteoporotic agent. Current Drug Targets 14(13): 1533-1541.

Chiu, Y.C., Larson, J.C., Isom, A. & Brey, E.M. 2010. Generation of porous poly(ethylene glycol) hydrogels by salt leaching. Tissue Engineering Part C: Methods 16(5): 905-912.

Chun, J., Lee, J., Ye, L., Exler, J. & Eitenmiller, R.R. 2006. Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet. Journal of Food Composition and Analysis 19(2-3): 196-204.

Daud, Z.A., Tubie, B., Sheyman, M., Osia, R., Adams, J., Tubie, S. & Khosla, P. 2013. Vitamin E tocotrienol supplementation improves lipid profiles in chronic hemodialysis patients. Vascular Health and Risk Management 9(1): 747-761.

Eiselt, P., Yeh, J., Latvala, R.K., Shea, L.D. & Mooney, D.J. 2000. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 21(19): 1921-1927.

Feresin, R.G., Johnson, S.A., Elam, M.L., Kim, J.S., Khalil, D.A., Lucas, E.A., Smith, B.J., Payton, M.E., Akhter, M.P. & Arjmandi, B.H. 2013. Effects of vitamin E on bone biomechanical and histomorphometric parameters in ovariectomized rats. Journal of Osteoporosis 2013: 825985.

Finkelstein, J.S., Wyland, J.J., Lee, H. & Neer, R.M. 2010. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. The Journal of Clinical Endocrinology and Metabolism 95(4): 1838-1845.

Hermizi, H., Faizah, O., Soelaiman, I.N., Ahmad Nazrun, S. & Norazlina, M. 2009. Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in Sprague-Dawley male rats after nicotine cessation. Calcified Tissue International 84(1): 65-74.

Leclerc, E., David, B., Griscom, L., Lepioufle, B., Fujii, T., Layrolle, P. & Legallaisa, C. 2006. Study of osteoblastic cells in a microfluidic environment. Biomaterials 27(4): 586-595.

Mangialasche, F., Xu, W., Kivipelto, M., Costanzi, E., Ercolani, S., Pigliautile, M., Cecchetti, R., Baglioni, M., Simmons, A., Soininen, H., Tsolaki, M., Kloszewska, I., Vellas, B., Lovestone, S. & Mecocci, P. 2012. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiology of Aging 33(10): 2282-2290.

Martin, I., Wendt, D. & Heberer, M. 2004. The role of bioreactors in tissue engineering. Trends in Biotechnology 22(2): 80-86.

Mazlan, M., Then, S.M., Mat Top, G. & Zurinah Wan Ngah, W. 2006. Comparative effects of α-tocopherol and γ-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes. Journal of the Neurological Science 243(1-2): 5-12.

Mohamad, N.V., Soelaiman, I.N. & Chin, K.Y. 2018a. Effect of tocotrienol from Bixa orellana (annatto) on bone microstructure, calcium content, and biomechanical strength in a model of male osteoporosis induced by buserelin. Drug Design, Development and Therapy 12: 555-564.

Mohamad, N.V., Soelaiman, I.N. & Chin, K.Y. 2018b. Effects of tocotrienol from Bixa orellana (annatto) on bone histomorphometry in a male osteoporosis model induced by buserelin. Biomedicine & Pharmacotherapy 103: 453-462.

Motamedian, S.R., Hosseinpour, S., Ahsaie, M.G. & Khojasteh, A. 2015. Smart scaffolds in bone tissue engineering: A systematic review of literature. World Journal of Stem Cells 7(3): 657-668.

Pavone, V., Testa, G., Giardina, S.M.C., Vescio, A., Restivo, D.A. & Sessa, G. 2017. Pharmacological therapy of osteoporosis: A systematic current review of literature. Frontiers in Pharmacology 8(803): 1-7.

Roux, S. & Orcel, P. 2000. Bone loss. Factors that regulate osteoclast differentiation: An update. Arthritis Research & Therapy 2(6): 451-456.

Sen, C.K., Rink, C. & Khanna, S. 2010. Palm oil-derived natural vitamin E alpha-tocotrienol in brain health and disease. Journal of the American College of Nutrition 29(3): 314-323.

Shah, A.K. & Yeganehjoo, H. 2019. The stimulatory impact of d-δ-tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts. Molecular and Cellular Biochemistry 462(1-2): 173-183.

Shahabipour, F., Mahdavi-Shahri, N., Matin, M.M., Tavassoli, A. & Zebarjad, S.M. 2013. Scaffolds derived from cancellous bovine bone support mesenchymal stem cells' maintenance and growth. In Vitro Cellular & Developmental Biology - Animal 49(6): 440-448.

Shen, C.L., Klein, A., Chin, K.Y., Mo, H., Tsai, P., Yang, R.S., Chyu, M.C. & Soelaiman, I.N. 2017. Tocotrienols for bone health: A translational approach. Annals of the New York Academy of Sciences 1401(1): 150-165.

Shuid, A.N., Mehat, Z., Mohamed, N., Muhammad, N. & Soelaiman, I.N. 2010. Vitamin E exhibits bone anabolic actions in normal male rats. Journal of Bone and Mineral Metabolism 28(2): 149-156.

Soeta, S., Higuchi, M., Yoshimura, I., Itoh, R., Kimura, N. & Aamsaki, H. 2010. Effects of vitamin E on the osteoblast differentiation. Journal of Veterinary Medical Science 72(7): 951-957.

Szulc, P. & Bauer, D.C. 2013. Biochemical markers of bone turnover in osteoporosis. In Osteoporosis. 4th ed., edited by Marcus, R., Feldman, D., Dempster, D.W., Luckey, M. & Cauley, J.A. San Diego: Academic Press. pp. 1573-1610.

Vasanthi, H.R., Parameswari, R.P. & Das, D.K. 2012. Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation. Genes & Nutrition 7(1): 19-28.

Vozzi, G., Corallo, C., Carta, S., Fortina, M., Gattazzo, F., Galletti, M. & Giordano, N. 2014. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. Journal of Biomedical Materials Research Part A 102(5): 1415-1421.

Wan Hasan, W.N., Chin, K.Y., Abd Ghafar, N. & Soelaiman, I.N. 2020. Annatto-derived tocotrienol promotes mineralization of MC3T3-E1 cells by enhancing BMP-2 protein expression via inhibiting RhoA Activation and HMG-CoA reductase gene expression. Drug Design, Development and Therapy 14: 969-976.

Wan Hasan, W.N., Abd Ghafar, N., Chin, K.Y. & Soelaiman, I.N. 2018. Annatto-derived tocotrienol stimulates osteogenic activity in preosteoblastic MC3T3-E1 cells: A temporal sequential study. Drug Design, Development and Therapy 12: 1715-1726.

Wang, X., Schröder, H.C., Wiens, M., Ushijima, H. & Müller, W.E. 2012. Bio-silica and bio-polyphosphate: Applications in biomedicine (bone formation). Current Opinion in Biotechnology 23(4): 570-578.

Wong, S.K., Kamisah, Y., Mohamed, N., Muhammad, N., Masbah, N., Fahami, N.A.M., Mohamed, I.N., Shuid, A.N., Saad, Q.M., Abdullah, A., Mohamad, N.V., Ibrahim, N.I., Pang, K.L., Chow, Y.Y., Thong, B.K.S., Subramaniam, S., Chan, C.Y., Soelaiman, I.N. & Chin, K.Y. 2020. Potential role of tocotrienols on non-communicable diseases: A review of current evidence. Nutrients 12(1): 259-342.

Wong, S.K., Mohamad, N.V., Ibrahim, N., Chin, K.Y., Shuid, A.N. & Soelaiman, I.N. 2019. The molecular mechanism of vitamin E as a bone-protecting agent: A review on current evidence. International Journal of Molecular Sciences 20(6): 1453-1478.

Xu, W., He, P., He, S., Cui, P., Mi, Y., Yang, Y., Li, Y. & Zhou, S. 2018. Gamma-tocotrienol stimulates the proliferation, differentiation, and mineralization in osteoblastic MC3T3-E1 cells. Journal of Chemistry 2018: 3805932.

Yao, K.L., Todescan Jr., R. & Sodek, J. 1994. Temporal changes in matrix protein synthesis and mRNA expression during mineralized tissue formation by adult rat bone marrow cells in culture. Journal of Bone and Mineral Research 9(2): 231-240.

Zhang, Y., Venugopal, J.R., Wong, S., Li, X., Su, B., Ramakrishna, S. & Lim, C.T. 2010. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Engineering Part A 16(6): 1949-1960.

Zhang, Y., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B. & Lim, C.T. 2008. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29(32): 4314-4322.

 

*Corresponding author; email: imasoel@ppukm.ukm.edu.my

 

 

             

previous