Sains Malaysiana 50(8)(2021): 2319-2328
http://doi.org/10.17576/jsm-2021-5008-15
Comparing the Effects of Alpha-Tocopherol and Tocotrienol Isomers on
Osteoblasts hFOB 1.19 Cultured on Bovine Bone
Scaffold
(Perbandingan Kesan Isomer Alfa-Tokoferol dan Tokotrienol pada Osteoblas hFOB 1.19
yang Dikultur atas Perancah Tulang Bovin)
NUR FARHANA
MOHD FOZI1, JAMES JAM JOLLY1, CHUA KIEN HUI2,
EKRAM ALIAS3, CHIN KOK YONG1 & IMA NIRWANA SOELAIMAN1*
1Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan
Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan
Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
3Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan
Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
Received:
3 April 2020/Accepted: 9 December 2020
ABSTRACT
Tocotrienol mixtures have been shown to exert anabolic actions on the
skeletal system in animal studies, but it is unclear which tocotrienol isomer
shows the most prominent effects. This study aims to investigate the most
active tocotrienol isomers using hFOB 1.19 human
osteoblasts cultured on a bovine bone scaffold. The bovine trabecular bone was
sectioned, demineralised and freeze-dried to form the scaffold. hFOB 1.19 osteoblasts were cultured on the bone scaffolds
in humidified condition at 37 °C and 5% carbon dioxide with vitamin E isomers
(alpha-, beta-, gamma-, delta-tocotrienol and alpha-tocopherol). The cell
differentiation capacity of tocotrienol isomers was investigated through
morphological observation, alkaline phosphatase (ALP) activity and osteocalcin
expression. Changes in the bone scaffolds were determined using
histomorphometry methods. Osteoblast culture treated with gamma- and
delta-tocotrienols showed a significant increase in ALP activity and
osteocalcin expression. Bone structural histomorphometry analysis showed that
bone scaffolds treated with gamma- and delta-tocotrienol showed significant
increases in bone volume and trabecular thickness. In conclusion, gamma- and
delta-tocotrienol show the most prominent bone anabolic effects by increasing
osteoblast differentiation and enhancing bone microstructure.
Keywords:
Bone; osteoblast; osteoporosis; tocopherol; tocotrienol
ABSTRAK
Campuran tokotrienol telah terbukti memberi kesan anabolik kepada sistem rangka di dalam kajian haiwan, tetapi isomer tokotrienol yang paling berkesan belum dikenal pasti.
Kajian ini bertujuan mengkaji isomer tokotrienol yang
paling aktif dengan menggunakan sel osteoblas manusia hFOB 1.19 yang dikultur atas tulang perancah lembu. Tulang trabekular lembu dipotong dan dikering-beku untuk membentuk perancah. Sel osteoblas hFOB 1.19 dikulturkan di atas perancah tulang dalam kelembapan 37 °C dan 5% karbon dioksida bersama isomer vitamin E
(alfa-tokotrienol, beta-tokotrienol, gamma-tokotrienol, delta-tokotrienol dan alfa-tokoferol). Kapasiti pembezaan sel isomer tokotrienol dikaji melalui pemerhatian morfologi, aktiviti alkalin phosphatase (ALP) dan ekspresi osteokalsin. Perubahan struktur tulang ditentukan dengan kaedah histomorfometri. Sel osteoblas yag dirawat dengan gamma- dan
delta-tokotrienol menunjukkan peningkatan aktiviti ALP
dan ekspresi osteokalsin yang ketara. Tulang perancah yang dirawat dengan gamma-tokotrienol dan
delta-tokotrienol mempunyai peningkatan isi padu serta ketebalan trabekular yang ketara melalui analisis histomorfometri. Secara kesimpulannya, gamma- dan delta-tokotrienol menunjukkan kesan anabolik tulang yang paling ketara dengan meningkatkan pembezaan osteoblas dan struktur seni tulang.
Kata kunci: Osteoblas;
osteoporosis; tokoferol; tokotrienol; tulang
REFERENCES
Abdullah, A.R., Hapidin, H.
& Abdullah, H. 2018. The role of semipurified fractions isolated from Quercus infectoria on
bone metabolism by using hFOB 1.19 human fetal osteoblast cell model. Evidence-based Complementary
and Alternative Medicine 2018: 5319528.
Abdul-Majeed, S., Mohamed, N. & Soelaiman, I.N. 2015. The use of delta-tocotrienol and
lovastatin for anti-osteoporotic therapy. Life Sciences 125: 42-48.
Cejka, D., Benesch, T., Krestan,
C., Roschger, P., Klaushofer,
K., Pietschmann, P. & Haas, M. 2008. Effect of teriparatide on early bone
loss after kidney transplantation. American Journal of Transplantation 8(9): 1864-1870.
Chin, K.Y. & Soelaiman,
I.N. 2019. The role of tocotrienol in preventing male osteoporosis - A review
of current evidence. International Journal of Molecular Sciences 20(6):
1355-1374.
Chin, K.Y. & Soelaiman,
I.N. 2015. The biological effects of tocotrienol on bone: A review on evidence
from rodent models. Drug Design, Development and Therapy 9: 2049-2061.
Chin, K.Y. & Soelaiman,
I.N. 2014. Effects of annatto-derived tocotrienol supplementation on
osteoporosis induced by testosterone deficiency in rats. Clinical
Intervention in Aging 9: 1247-1259.
Chin, K.Y., Abdul-Majeed, S., Mohamed, N. & Soelaiman, I.N. 2017. The effects of tocotrienol and
lovastatin co-supplementation on bone dynamic histomorphometry and bone
morphogenetic protein-2 expression in rats with estrogen deficiency. Nutrients 9(2): 143-154.
Chin, K.Y., Mo, H. & Soelaiman,
I.N. 2013. A review of the possible mechanisms of action of tocotrienol - A
potential antiosteoporotic agent. Current Drug
Targets 14(13): 1533-1541.
Chiu, Y.C., Larson, J.C., Isom, A. & Brey, E.M.
2010. Generation of porous poly(ethylene glycol)
hydrogels by salt leaching. Tissue Engineering Part C: Methods 16(5):
905-912.
Chun, J., Lee, J., Ye, L., Exler,
J. & Eitenmiller, R.R. 2006. Tocopherol and
tocotrienol contents of raw and processed fruits and vegetables in the United
States diet. Journal of Food Composition and Analysis 19(2-3): 196-204.
Daud, Z.A., Tubie, B., Sheyman, M., Osia, R., Adams, J., Tubie, S. & Khosla, P. 2013. Vitamin E
tocotrienol supplementation improves lipid profiles in chronic hemodialysis patients. Vascular Health and Risk Management 9(1): 747-761.
Eiselt, P., Yeh, J., Latvala, R.K., Shea, L.D. & Mooney,
D.J. 2000. Porous carriers for biomedical applications based on alginate
hydrogels. Biomaterials 21(19): 1921-1927.
Feresin, R.G., Johnson, S.A., Elam, M.L., Kim, J.S., Khalil,
D.A., Lucas, E.A., Smith, B.J., Payton, M.E., Akhter, M.P. & Arjmandi, B.H. 2013. Effects of vitamin E on bone
biomechanical and histomorphometric parameters in
ovariectomized rats. Journal of Osteoporosis 2013: 825985.
Finkelstein, J.S., Wyland,
J.J., Lee, H. & Neer, R.M. 2010. Effects of
teriparatide, alendronate, or both in women with postmenopausal osteoporosis. The
Journal of Clinical Endocrinology and Metabolism 95(4): 1838-1845.
Hermizi, H., Faizah, O., Soelaiman, I.N., Ahmad Nazrun, S.
& Norazlina, M. 2009. Beneficial effects of
tocotrienol and tocopherol on bone histomorphometric parameters in Sprague-Dawley male rats after nicotine cessation. Calcified
Tissue International 84(1): 65-74.
Leclerc, E., David, B., Griscom,
L., Lepioufle, B., Fujii,
T., Layrolle, P. & Legallaisa,
C. 2006. Study of osteoblastic cells in a microfluidic environment. Biomaterials 27(4): 586-595.
Mangialasche, F., Xu, W., Kivipelto, M., Costanzi, E., Ercolani,
S., Pigliautile, M., Cecchetti,
R., Baglioni, M., Simmons, A., Soininen, H., Tsolaki, M., Kloszewska, I., Vellas, B., Lovestone, S. & Mecocci, P. 2012. Tocopherols and tocotrienols plasma
levels are associated with cognitive impairment. Neurobiology of Aging 33(10): 2282-2290.
Martin, I., Wendt, D. & Heberer,
M. 2004. The role of bioreactors in tissue engineering. Trends in
Biotechnology 22(2): 80-86.
Mazlan, M., Then, S.M., Mat Top, G. & Zurinah Wan Ngah, W. 2006.
Comparative effects of α-tocopherol and γ-tocotrienol against
hydrogen peroxide induced apoptosis on primary-cultured astrocytes. Journal
of the Neurological Science 243(1-2): 5-12.
Mohamad, N.V., Soelaiman,
I.N. & Chin, K.Y. 2018a. Effect of tocotrienol from Bixa orellana (annatto) on bone microstructure,
calcium content, and biomechanical strength in a model of male osteoporosis
induced by buserelin. Drug Design, Development and
Therapy 12: 555-564.
Mohamad, N.V., Soelaiman,
I.N. & Chin, K.Y. 2018b. Effects of tocotrienol from Bixa orellana (annatto) on bone histomorphometry in a
male osteoporosis model induced by buserelin. Biomedicine
& Pharmacotherapy 103: 453-462.
Motamedian, S.R., Hosseinpour, S., Ahsaie, M.G. & Khojasteh, A.
2015. Smart scaffolds in bone tissue engineering: A systematic review of
literature. World Journal of Stem Cells 7(3): 657-668.
Pavone, V., Testa, G., Giardina,
S.M.C., Vescio, A., Restivo, D.A. & Sessa, G.
2017. Pharmacological therapy of osteoporosis: A systematic current review of
literature. Frontiers in Pharmacology 8(803): 1-7.
Roux, S. & Orcel, P.
2000. Bone loss. Factors that regulate osteoclast differentiation: An update. Arthritis
Research & Therapy 2(6): 451-456.
Sen, C.K., Rink, C. & Khanna, S. 2010. Palm
oil-derived natural vitamin E alpha-tocotrienol in brain health and disease. Journal
of the American College of Nutrition 29(3): 314-323.
Shah, A.K. & Yeganehjoo,
H. 2019. The stimulatory impact of d-δ-tocotrienol on the differentiation
of murine MC3T3-E1 preosteoblasts. Molecular and
Cellular Biochemistry 462(1-2): 173-183.
Shahabipour, F., Mahdavi-Shahri, N., Matin, M.M., Tavassoli, A. & Zebarjad,
S.M. 2013. Scaffolds derived from cancellous bovine bone support mesenchymal
stem cells' maintenance and growth. In Vitro Cellular & Developmental
Biology - Animal 49(6): 440-448.
Shen, C.L., Klein, A., Chin, K.Y., Mo, H., Tsai, P.,
Yang, R.S., Chyu, M.C. & Soelaiman,
I.N. 2017. Tocotrienols for bone health: A translational approach. Annals of
the New York Academy of Sciences 1401(1): 150-165.
Shuid, A.N., Mehat, Z., Mohamed,
N., Muhammad, N. & Soelaiman, I.N. 2010. Vitamin
E exhibits bone anabolic actions in normal male rats. Journal of Bone and
Mineral Metabolism 28(2): 149-156.
Soeta, S., Higuchi, M., Yoshimura, I., Itoh, R., Kimura, N.
& Aamsaki, H. 2010. Effects of vitamin E on the
osteoblast differentiation. Journal of Veterinary Medical Science 72(7):
951-957.
Szulc, P. & Bauer, D.C. 2013. Biochemical markers of
bone turnover in osteoporosis. In Osteoporosis. 4th ed., edited by
Marcus, R., Feldman, D., Dempster, D.W., Luckey, M.
& Cauley, J.A. San Diego: Academic Press. pp.
1573-1610.
Vasanthi, H.R., Parameswari, R.P.
& Das, D.K. 2012. Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation. Genes & Nutrition 7(1):
19-28.
Vozzi, G., Corallo, C., Carta,
S., Fortina, M., Gattazzo,
F., Galletti, M. & Giordano, N. 2014. Collagen-gelatin-genipin-hydroxyapatite
composite scaffolds colonized by human primary osteoblasts are suitable for
bone tissue engineering applications: in vitro evidences. Journal of
Biomedical Materials Research Part A 102(5): 1415-1421.
Wan Hasan, W.N., Chin, K.Y., Abd Ghafar,
N. & Soelaiman, I.N. 2020. Annatto-derived
tocotrienol promotes mineralization of MC3T3-E1 cells by enhancing BMP-2
protein expression via inhibiting RhoA Activation and HMG-CoA reductase gene expression. Drug Design, Development
and Therapy 14: 969-976.
Wan Hasan, W.N., Abd Ghafar,
N., Chin, K.Y. & Soelaiman, I.N. 2018.
Annatto-derived tocotrienol stimulates osteogenic activity in preosteoblastic MC3T3-E1 cells: A temporal sequential study. Drug Design, Development and Therapy 12: 1715-1726.
Wang, X., Schröder, H.C.,
Wiens, M., Ushijima, H. & Müller, W.E. 2012. Bio-silica and
bio-polyphosphate: Applications in biomedicine (bone formation). Current
Opinion in Biotechnology 23(4): 570-578.
Wong, S.K., Kamisah, Y.,
Mohamed, N., Muhammad, N., Masbah, N., Fahami, N.A.M., Mohamed, I.N., Shuid,
A.N., Saad, Q.M., Abdullah, A., Mohamad, N.V., Ibrahim, N.I., Pang, K.L., Chow,
Y.Y., Thong, B.K.S., Subramaniam, S., Chan, C.Y., Soelaiman,
I.N. & Chin, K.Y. 2020. Potential role of tocotrienols on non-communicable
diseases: A review of current evidence. Nutrients 12(1): 259-342.
Wong, S.K., Mohamad, N.V., Ibrahim, N., Chin, K.Y., Shuid, A.N. & Soelaiman, I.N.
2019. The molecular mechanism of vitamin E as a bone-protecting agent: A review
on current evidence. International Journal of Molecular Sciences 20(6):
1453-1478.
Xu, W., He, P., He, S., Cui, P., Mi, Y., Yang, Y., Li,
Y. & Zhou, S. 2018. Gamma-tocotrienol stimulates the proliferation,
differentiation, and mineralization in osteoblastic MC3T3-E1 cells. Journal
of Chemistry 2018: 3805932.
Yao, K.L., Todescan Jr., R.
& Sodek, J. 1994. Temporal changes in matrix
protein synthesis and mRNA expression during mineralized tissue formation by
adult rat bone marrow cells in culture. Journal of Bone and Mineral Research 9(2): 231-240.
Zhang, Y., Venugopal, J.R., Wong, S., Li, X., Su, B.,
Ramakrishna, S. & Lim, C.T. 2010. Enhanced biomineralization in osteoblasts
on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue
Engineering Part A 16(6): 1949-1960.
Zhang, Y., Venugopal, J.R., El-Turki,
A., Ramakrishna, S., Su, B. & Lim, C.T. 2008. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue
engineering. Biomaterials 29(32): 4314-4322.
*Corresponding
author; email: imasoel@ppukm.ukm.edu.my
|