Sains Malaysiana 50(8)(2021): 2379-2393
http://doi.org/10.17576/jsm-2021-5008-20
Evaluating the Potential of Pyriproxyfen Dissemination using Mosquito Home
System against Aedes albopictus at a Dengue Hotspot Area
(Menilai Potensi Penyebaran Pyriproxyfen menggunakan Sistem Rumah Nyamuk
terhadap Aedes albopictus di Satu Kawasan
'Titik Panas' Denggi)
AHMAD MOHIDDIN MOHD NGESOM1,
NAZNI WASI AHMAD2, LEE
HAN LIM2, ASMALIA MD LASIM3, DAVID GREENHALGH4,
MAZRURA SAHANI1, ROZITA HOD5 & HIDAYATULFATHI OTHMAN1*
1Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul
Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
2Medical Entomology Unit, Institute for Medical Research, Jalan
Pahang, 50588 Kuala Lumpur, Federal Territory, Malaysia
3Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Department of Mathematics and Statistics, University of
Strathclyde, 16, Richmond Street, Glasgow, G11XQ, United Kingdom
5Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan
Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
Received: 30 March 2020/Accepted: 31 December 2020
ABSTRACT
Aedes mosquitoes were found to lay their eggs in the cryptic breeding sites.
Eliminating cryptic and open breeding sites is essential in reducing dengue
virus transmission. However, it is often challenging for health officers to
assess these breeding sites which are usually missed during larval
surveillance. The autodissemination approach may produce a better outcome by
manipulating female mosquitoes to disperse insecticide to other Aedes spp. mosquito
habitats. Thus, the present study aims to evaluate the effectiveness of the pyriproxyfen
autodissemination technique using Mosquito Home System against the population
of mosquitoes. This study was conducted in Bandar Baru Bangi, Selangor, Malaysia. The Mosquito
Home System was deployed to control Aedes
spp. populations at treatment sites using
before-after-control-impact (BACI) design. The presence of pyriproxyfen distribution was confirmed using the WHO larval bioassay which resulted in
10-35% larvae mortalities. Autodissemination of pyriproxyfen significantly
reduced the population size of mosquito eggs (p<0.05), larvae (p<0.05),
and ovitrap index (p<0.05)
at the treatment areas compared to the control areas. Moreover, rainfall was
correlated positively against ovitrap index (r = 0.247), larvae (r = 0.420), and eggs (r = 0.422).
The study provides promising results for controlling Aedes spp. populations and also highlights the
potentials of this technique as an alternative in vector control programmes.
However, further studies on larger scale field trials are warranted.
Keywords: Aedes; autodissemination; emergence inhibition; pyriproxyfen; vector control
ABSTRAK
Nyamuk Aedes ditemui
bertelur di kawasan pembiakan yang tersembunyi. Penghapusan bekas tersembunyi
dan terbuka adalah penting bagi mengurangkan penularan virus denggi. Walau
bagaimanapun, kawasan pembiakan ini sukar dikesan oleh anggota kesihatan dan
lazimnya diabaikan semasa pemantauan larva. Kaedah penyebaran-auto memberikan
keputusan yang baik dengan memanipulasi nyamuk betina untuk memindahkan insektisid
ke habitat nyamuk Aedes. Oleh itu, kajian ini adalah untuk menilai keberkesanan
kaedah penyebaran-auto pyriproxyfen menggunakan Sistem Rumah Nyamuk terhadap populasi nyamuk liar. Kajian ini dijalankan di Bandar Baru
Bangi, Selangor. Sistem Rumah
Nyamuk digunakan
untuk mengawal populasi Aedes spp.
di lokasi rawatan dengan kaedah sebelum-selepas-kawalan-impak. Kehadiran
penyebaran pyriproxyfen dibuktikan dengan bioasai larva WHO telah menunjukkan
10-35% mortaliti larva. Penyebaran pyriproxyfen secara
signifikan menurunkan saiz populasi telur nyamuk (p<0.05), larva (p<0.05) dan indeks ovitrap (p<0.05) di kawasan rawatan
berbanding kawasan kawalan. Selain itu, taburan hujan berkorelasi secara
positif terhadap indeks ovitrap (r = 0.247), larva (r = 0.420) dan
telur (r = 0.422). Kajian ini
memberikan keputusan yang memberangsangkan dalam mengawal populasi Aedes spp. dan
menyerlahkan potensi kaedah ini sebagai alternatif dalam program kawalan
vektor. Walau bagaimanapun, kajian lapangan pada skala besar adalah satu
keperluan.
Kata kunci: Aedes; kawalan vektor; penyebaran-auto; perencatan tumbesaran; pyriproxyfen
REFERENCES
Abad-Franch, F., Zamora-Perea, E.,
Ferraz, G., Padilla-Torres, S.D. & Luz, S.L.B. 2015. Mosquito-disseminated
pyriproxyfen yields high breeding-sit coverage and boosts juvenile mosquito
mortality at the neighbourhood scale. PLoS Negl. Trop. Dis. 9(4): e0003702.
Abu Hasan, Z., Williams, H., Ismail,
N.M., Othman, H., Cozier, G.E. & Acharya, K.R. 2017. The toxicity of
angiotensin-converting enzyme inhibitors to larvae of the disease vectors Aedes
aegypti and Anopheles gambiae. Scientific Reports 7: 45409.
Achee, N.L., Gould, F., Perkins,
T.A., Reiner, R.C., Morrison, A.C., Ritchie, S.A., Gubler, D.J., Teyssou, R.
& Scott, T.W. 2015. A critical assessment of vector control for dengue
prevention. PLoS Neglected Tropical Diseases 9(5): e0003655.
Afify, A.,
Horlacher, B., Roller, J. & Galizia, C.G. 2014. Different repellents for Aedes
aegypti against blood-feeding and oviposition. PLoS ONE 9(7):
e103765.
Ahmad-Azri, M., Syamsa, R.A.,
Ahmad-Firdaus, M.S. & Aishah-Hani, A. 2019. A comparison to different types
of ovitraps for outdoor monitoring of Aedes mosquitoes in Kuala Lumpur. Tropical
Biomedicine 36(2): 335-347.
Amaechi, E.C., Ukpai, O.M., Ohaeri,
C.C., Ejike, U.B. & Irole-Eze, O.P. 2018. Distribution and seasonal
abundance of anopheline mosquitoes and their association with rainfall around
irigation and non-irrigation areas in Nigeria. Cuadernos de Investigación 10(2):
267-272.
Azhar, Z.I., Jusoh, A., Syed Abdul
Rahim, S.S., Hassan, M.R., Safian, N. & Shah, S.A. 2016. Temporal spatial
distribution of dengue and implications on control in Hulu Langat, Selangor,
Malaysia. Dengue Bull. 39: 19-31.
Betanzos-Reyes, A.F., Rodriguez,
M.H., Romerp-Martinez, M., Sesma-Medrano, E., Rangel-Flores, H. &
Santos-Luna, R. 2018. Association with Aedes spp. abundance and
climatological effects. Salud Pública de México 60(1): 12-20.
Bhatt, S., Gething, P.W., Brady,
O.J., Messina, J.P., Farlow, A.W. & Moyes, C.L. 2011. The global
distribution and burden dengue. Nature 496(7446): 504-507.
Bowman, L.R., Dobegan, S. &
McCall, P.J. 2016. Is dengue vector control deficient in effectiveness of
evidence?: Systematic review and meta-analysis. PLoS Neglected Tropical
Diseases 10(3): e0004551.
Buchman, A., Gamez, S., Li, M.,
Antosheckin, I., Li, H.H. & Wang, H.W. 2019. Engineered resistance to zika
virus in transgenic Aedes aegypti expressing a polycistronic cluster of
synthetic small RNAs. PNAS 116(9): 3656-3661.
Caputo, B., Lenco, A., Cianci, D.,
Pombi, M., Petrarca, V. & Baseggio, A. 2012. The autodissemination
approach: A novel concept to fight Aedes albopictus in urban areas. PLoS
Neglected Tropical Diseases 6(8): e1793.
Chadee, D.D. & Ritchie, S.A.
2010. Efficacy of sticky and standard ovitraps for Aedes aegypti in
Trinidad, Wes Indies. Journal of Vector Ecology 35(2): 395-400.
Chism, B.D. & Apperson, C.S.
2003. Horizontal transfer of insect growth regulator pyriproxyfen to larval
microcosm by gravid Aedes albopictus and Ochlerotatus triseriatus mosquitoes
in the laboratory. Medical and Veterinary Entomology 17(2): 211-220.
Choi, Y., Tang, C.S., Mclver, L.,
Hashizume, M., Chan, V. & Abeyasinghe, R.R. 2016. Effects of weather
factors on dengue fever incidence and implication for interventions in
Cambodia. BMC Public Health 16: 241.
Contreras-Perera, Y.J.,
Briceno-Mendez, M., Flores-Suares, A.E., Manrique-Saide, P. &
Palacio-Vargas, J.A. 2019. New record of Aedes albopictus in a suburban
area of Merida, Yucatan, Mexico. Journal of the American Mosquito Control
Association 35(3): 210-213.
Hidayatulfathi, O., Shamsuddin, A.F.,
Rajab, N.F., Nor Zafirah, A.B., Nur Hazwani, A.A. & Nur Afriza, M.F.O.
2017. Three repellent gels that contain essential oils from local Malaysian
plants against dengue vector. Tropical Biomedicine 34(3): 540-549.
Hod, R., Othman, H., Jemian, N.A.,
Sahani, M., Udin, M.K. & Ali, Z.M. 2013. The COMBI approach in managing
dengue cases in non urban residential area, Nilai, Malaysia. International
Journal of Public Health Research 3(2): 347-352.
Imam, H., Zarnigar, Sofi, G. &
Seikh, A. 2014. The basic rules and methods of mosquito rearing (Aedes
aegypti). Tropical Parasitology 4(1): 53-55.
Invest, J.F. & Lucas, J.R. 2008.
Pyriproxyfen as a mosquito larvicide. Proceedings
of the 6th International Conference on Urban Pests. pp. 239-245.
Khan, G.Z., Khan, I., Khan, I.A.,
Alamzeb, Salman, M. & Ullah, K. 2016. Evaluation of different formulation
of IGRs against Aedes albopictus and Culex quinqiefasciatus (Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine 6(6): 485-491.
Ladien, J., Souv, K., Leang, R., Huy,
R., Cousien, A. & Peas, M. 2019. An algorithm applied to national
surveillance data for the early detection of major dengue outbreaks in
Cambodia. PLoS ONE 14(2): e0212003.
Lau, K.W., Chen, C.D., Lee, H.L.,
Rashid, Y.N. & Azirun, M.S. 2015. Evaluation of insect growth regulators
against field-collected Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Malaysia. Journal of Medical Entomology 52(2):
199-206.
Liang, Y., Mohd Ngesom, A.M.,
Bahauddin, R., Hidayatul, F.O., Nazni, W.A. & Lee, H.L. 2019. Modelling the
effect of a novel autodissemination trap on the spread of dengue in Shah Alam
and Malaysia. Computational and Mathematical Methods 2019: 1923479.
Lindsay, S.W., Wilson, A., Golding,
N., Scott, T.W. & Takken, W. 2017. Improving the built environment in urban
areas to control Aedes aegypti borne diseases. Bulletin World Health
Organization 95: 607-608.
Llyod, A.M., Farooq, M., Estep, A.S.,
Xue, R.D. & Kline, D.L. 2017. Evaluation of pyriproxyfen dissemination via Aedes
albopictus from a point-source larvicide application in Northeast Florida. Journal
of the American Mosquito Control Association 33(2): 151-155.
Lwetoijera, D., Kiware, S., Okumu,
F., Devine, G.J. & Majambere, S. 2019. Autodissemination of pyriproxyfen
suppresses stable populations of Anopheles arabiensis under
semi-controlled settings. Malaria Journal 18: 166.
Mains, B.J., Nicholson, J., Winokur,
O.C., Steiner, C., Riemersma, K.K. & Stuart, J. 2018. Vector competence of Aedes
aegypti, Culex tarsalis, and Culex quinquefasciatus from
California for Zika virus. PLoS Neglected Tropical Diseases 12(6):
e0006524.
Maula, A.W., Fuad, A. & Utarini,
A. 2018. Ten-years trend of dengue research in Indonesia and South-east Asian
countries: A bibliometric analysis. Global Health Action 11(1): 1504398.
Mbare, O., Lindsay, S.W. &
Fillinger, U. 2014. Pyriproxyfen for mosquito control: Female sterilization or
horizontal transfer to oviposition substrates by Anopheles gambiae sensu
stricto and Culex quinquefasciatus. Parasites Vectors 7: 280.
Ngesom, A.M.M., Greenhalgh, D.,
Lasim, A.M., Sahani, M., Hod, R. & Othman, H. 2020. A review:
Autodissemination of pyriproxyfen as novel strategy to control dengue
outbreaks. PERTANIKA Journal Science & Technology 28(4): 1117-1140.
Norzahira, R., Hidayatulfathi, O.,
Wong, H.M., Cheryl, A., Firdaus, R. & Chew, H.S. 2011. Ovitrap surveillance
of the dengue vectors, Aedes (Stegomyia) aegypti (L.) and Aedes (stegomyia) albopictus Skuse in selected areas in Bentong, Pahang
Malaysia. Tropical Biomedicine 28(1): 48-54.
Ohba, S.Y., Ohashi, K., Pujiyati, E.,
Higa, Y., Kawada, H., Mito, N. & Takagi, M. 2013. The effect of
pyriproxyfen as “population growth regulator” against Aedes albopictus under
semi-field condition. PLoS ONE 8(7): e67045.
Ong, J., Liu, X., Rajarethinam, J.,
Kok, S.Y., Liang, S. & Tang, C.S. 2018. Mapping dengue risk in Singapore
using random forest. PLoS Neglected Tropical Diseases 12(6): e0006587.
Othman, H., Zul-Izzat, I.K.,
Norhafizah, K., Nor Azimah, A.R., Muhammad Badrul, H., Mazrura, S., Rozita, H.,
Saiful Azlan, N. & Nor Azwani, M.N. 2019. Applying health belief model for
the assessment of community knowledge, attitute and prevention practices
following a dengue epidemic in a town ship in Selangor, Malaysia. International
Journal of Community Medicine and Public Health 6(1): 958-970.
Othman, H., Nordin, S.A., Rashid,
N.A., Abas, M.B.H., Hod, R. & Sahani, M. 2017. Dengue free community as an
approach for understanding the value and challenges of inter-agencies
partnerships in an intervention program. International Journal of Public
Health 4(6): 1810-1826.
Pang, T., Mak, T.K. & Gubler,
D.J. 2017. Prevention and control of dengue the light at the end of the
tunnels. The Lancets Infectious Diseases 17: e79-e87.
Panigrahi, S.K., Barik, T.K.,
Mohanty, S. & Tripathi, N.K. 2014. Laboratory evaluation of oviposition
behavior of field collected Aedes mosquitoes. Journal of Insects 2014:
207489.
Pleydell, D.R.J. & Bouyer, J.
2019. Biopesticides improve efficiency of the sterile insect technique for
controlling mosquito-driven dengue epidemics. Communications Biology 2(1):
1-11.
Raji, J.I., Nelo, N., Castillo, J.S.,
Sheyla, G., Saldana, V. & Stensmyr, M.C. 2019. Aedes aegypti mosquitoes
detect acidic volatiles found in human odor using IR8a pathway. Current Biology 29(8): 1253-1262.
Rozilawati, H., Zairi, J. &
Adanan, C.R. 2007. Seasonal abundance of Aedes albopictus in selected
urban and suburban areas in Penang, Malaysia. Tropical Biomedicine 24(1):
83-94.
Sahani, M., Othman, H., Mohd Nor,
N.A., Hod, R., Mohd Ali, Z. & Rasidi, M.N.M. 2012. Ecology survey on Aedes mosquito in
Senawang, Negeri Sembilan. Sains Malaysiana 41(2): 261-269.
Serpa, L.L.N., Marques, G.R.A.M.,
Lima, A.P., Voltolini, J.C., Arduino, M.B. & Barbosa, G.L. 2013. Study of
the distribution and abundance of the eggs of Aedes aegypti and Aedes
albopictus according to the habitat and meteorological variables,
municipality of Sao Sebatiao, Sao Paulo State, Brazil. Parasites Vectors 6(1):
1-11.
Sithiprasasna, R., Mahapibul, P.,
Noigamal, C., Perich, M.J., Zeichner, M.C. & Burge, B. 2013. Field
evaluation of a lethal ovitrap for the control of Aedes aegypti (Diptera: Culicidae) in Thailand. Journal of Medical Entomology 40(4):
455-462.
Smith, E.P., Orvos, D.R. &
Cairns, J. 1993. Impact assessment using the before-after-control-impact (BACI)
model: Concern and comments. Canadian Journal of Fisheries and Aquatic
Sciences 50(3): 627-637.
Srichan, P., Niyom, S.L., Pacheun,
O., Iamsirithawon, S., Chatchen, S., Jones, C., White, L.J. & Pan-ngum, W.
2018. Addressing challenges faced by insecticide spraying for the control of
dengue fever in Bangkok, Thailand: A qualitative approach. International Health 10(5): 349-355.
Stewart-Oaten, A. & Murdoch, W.W.
1986. Environmental impact assessment: “Pseudoreplication” in time? Ecology 67(4): 929-940.
Suman, D.S., Wang, Y., Faraji, A.,
William, G.M., Willinges, E. & Gaugler, R. 2018. Seasonal field efficacy of
pyriproxyfen autodissemination stations against container-inhabiting mosquito Aedes
albopictus under different habitat conditions. Pest Management Science 74(4):
885-895.
Suman, D.S., Farajollahi, A., Healy,
S., Williams, G.M., Wang, Y. & Schoeler, G. 2014. Point-source and
area-wide field studies of pyriproxyfen autodissemination against urban
container-inhabiting mosquitoes. Acta Tropica 135(1): 96-103.
Suppiah, J., Ching, S.M.,
Amin-Nordin, S., Mat-Nor, L.A., Ahmad-Najimudin, N.A. & Low, G.K.K.K. 2018.
Clinical manifestations of dengue in relation to dengue serotype and genotype
in Malaysia: A retrospective observational study. PLoS Neglected Tropical
Diseases 12(9): e0006817.
Suter, T.T., Flacio, E., Farina,
B.F., Engeler, L., Tonolla, M. & Regis, L.N. 2016. Surveillance and control
of Aedes albopictus in the Swiss-Italian border region: Differences in
egg densities between intervention and non-intervention areas. PLoS Neglected
Tropical Diseases 10: e0004315.
Tee, G.H., Yoep, N., Jai, A.N., Abdul
Mutalip, M.H., Paiwai, F., Hashim, M.H., Pan, S., Lodz, N.A. & Aris, T.
2019. Prolonged dengue outbreak at a high-rise apartment in Petaling Jaya,
Selangor, Malaysia: A case study. Tropical Biomedicine 36(2): 550-558.
Tokachil, N. & Yusuf, N. 2018.
Effect of rainfall duration on Aedes aegypti populations. AIP
Proceedings. p. 020081.
Tuten, H.C., Moosmann, P., Mathis, A.
& Schaffner, F. 2016. Effects of pyriproxyfen on Aedes japonicus development and its autodissemination by gravid female in laboratory trials. Journal
of the American Mosquito Control 32(1): 55-58.
Unlu, I., Rochlin, L., Suman, D.S.,
Wang, Y., Chandel, K. & Gaugler, R. 2020. Large-scale operational
pyriproxyfen autodissemination deployment to suppress the immature asian tiger
mosquito (Diptera: culicidae) populations. Journal of Medical Entomology 57(4):
1120-1130.
Unlu, I., Suman, D.S., Wang, Y.,
Klingler, K., Faraji, A. & Gaugler, R. 2017. Effectiveness of autodissemination
stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Parasites Vectors 10(1): 1-10.
Valdez,
L.D., Sibona, G.J. & Condat, C.A. 2018. Impact of rainfall on Aedes
aegypti populations. Ecological Modelling 385(1): 96-105.
Vector
Diseases Branch (VBD). 2005. Protocol for
Surveilance and Monitoring of Vector using Ovitrap. Putrajaya: Division of Disease Control, Ministry of Health.
Withanage,
G.P., Hapuarachchi, H.C., Viswakula, S.D., Gunawardena, Y.I.N.S. &
Hapugoda, M. 2020. Entomological surveillance with viral tracking demonstrates
a migrated viral strain caused dengue epidemic in July, 2017 in Sri Lanka. PLoS
ONE 15(5): e0231408.
World
Health Organization (WHO). 2020. Dengue
and Severe Dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Assessed on 25 March 2020.
World Health Organization (WHO).
2016. Monitoring and Managing Insecticide
Resistance in Aedes Mosquito Populations: Interim Guidance for Entomologists.. https://apps.who.int/iris/handle/10665/204588. Assessed on 8 March 2016.
Yazan, L.S., Paskaran, K., Gopalsamy,
B. & Majid, R.A. 2020. Aedestech Mosquito Home System prevents the hatch of Aedes mosquito eggs and reduces its population. PERTANIKA Journal of
Science & Technology 28(1): 263-278.
Zapletal, J., Erraguntla, M.,
Adelman, Z.N., Myles, K.M. & Lawley, M.A. 2018. Impacts of diurnal
temperature and larval density on aquatic development of Aedes aegypti. PLoS
ONE 13: e0194025.
Zul-‘Izzat, I.Z., Hidayatulfathi, O.,
Norhafizah, K., Nor Azimah, A.R., Mohamad Badrul, H.A., Mazrura, S., Rozita, H.
& Saiful Azlan, N. 2019. Knowledge and practices regarding Aedes control
amongst residents of dengue hotspot areas in Selangor: A cross-sectional study. Sains Malaysiana 48(4): 841-849.
*Corresponding author; email: hida@ukm.edu.my
|