Sains Malaysiana 50(8)(2021): 2469-2478
http://doi.org/10.17576/jsm-2021-5008-27
Situational Analysis for COVID-19:
Estimating Transmission Dynamics in Malaysia using an SIR-Type Model with
Neural Network Approach
(Analisis Keadaan untuk COVID-19: Penganggaran Dinamik Penularan di Malaysia menggunakan Model Jenis SIR dengan Pendekatan Rangkaian Neuron)
MOHAMMAD
SUBHI JAMILUDDIN1, MOHD HAFIZ MOHD1*, NOOR ATINAH AHMAD1 & KAMARUL IMRAN MUSA2
1School of Mathematical Sciences, Universiti Sains Malaysia, 11800
USM Penang, Pulau Pinang, Malaysia
2School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150
Kubang Kerian, Kelantan Darul Naim, Malaysia
Received:
30 January 2021/Accepted: 24 June 2021
Abstract
COVID-19
is a major health threat across the globe, which causes severe acute
respiratory syndrome, and it is highly contagious with significant morbidity
and mortality. In this paper, we examine the feasibility and implications of
several phases of Movement Control Order (MCO) and some non-pharmaceutical
intervention (NPI) strategies implemented by Malaysian government in the year
2020 using a mathematical model with SIR-neural network approaches. It is
observed that this model is able to mimic the trend of infection trajectories
of COVID-19 pandemic and, Malaysia had succeeded to flatten the infection curve
at the end of the Conditional MCO (CMCO) period. However, the signs of
‘flattening’ with R0 of less than one had been taken as a signal to
ease up on some restrictions enforced before. Though the government has made
compulsory the use of face masks in public places to control the spread of
COVID-19, we observe a contrasting finding from our model with regards to the
impacts of wearing mask policies in Malaysia on R0 and the infection
curve. Additionally, other events such as the Sabah State Election at the end
of third quarter of 2020 has also imposed a dramatic COVID-19 burden on the
society and the healthcare systems.
Keywords:
Basic reproduction number; neural network; non-pharmaceutical intervention; SIR
Model
ABSTRAK
COVID-19 adalah ancaman kesihatan utama di seluruh dunia dan penyakit ini boleh menyebabkan sindrom pernafasan akut yang teruk. Ia sangat mudah berjangkit dan telah mengakibatkan kadar kematian yang signifikan. Dalam makalah ini,
kami mengkaji kebolehlaksanaan dan implikasi beberapa fasa Perintah Kawalan Pergerakan (PKP) dan strategi campur tangan bukan farmasi (NPI) yang dilaksanakan oleh kerajaan Malaysia pada tahun 2020 dengan menggunakan model matematik melalui pendekatan SIR-rangkaian neuron.
Kami mendapati bahawa model ini dapat memimik trend trajektori jangkitan pandemik COVID-19 dan
Malaysia telah berjaya melandaikan lengkung jangkitan di akhir tempoh PKP Bersyarat (PKPB). Namun, tanda ‘landaian’ ini dengan R0 kurang daripada satu telah diambil sebagai isyarat untuk melonggarkan beberapa sekatan yang dijalankan sebelum ini. Walaupun kerajaan telah mewajibkan penggunaan topeng muka di tempat-tempat awam untuk mengawal penyebaran COVID-19, kami memerhatikan hasil yang kontras daripada model kami berkenaan dengan kesan penggunaan topeng muka di Malaysia terhadap nilai R0 dan
juga terhadap lengkung jangkitan. Selain itu, peristiwa lain seperti Pilihan Raya Negeri Sabah
pada akhir suku ketiga 2020 juga telah menyebabkan bebanan COVID-19 terhadap masyarakat dan sistem kesihatan negara.
Kata kunci: Asas nombor pembiakan; campur tangan bukan farmasi; Model SIR; rangkaian neuron
REFERENCES
Abdullah,
N.H. 2021. From the Desk of the Director-General of Health Malaysia (Kenyataan Akhbar KPK - Situasi Semasa Jangkitan Penyakit Coronavirus
2019 (COVID-19) di Malaysia). https://kpkesihatan.com/.
Bedi, R.S. 2020a.
COVID-19 spike: 277 new cases; 270 from Bukit Jalil detention centre. The Star. https://www.thestar.com.my/news/nation/2020/06/04/covid-19-spike-277-new-cases-no-deaths-for-13-straight-days.
Bedi, R.S. 2020b.
Muhyiddin admits Sabah polls caused third COVID-19 wave. The Star.
https://www.thestar.com.my/news/nation/2020/11/18/muhyiddin-admits-sabah-polls-caused-third-covid-19-wave.
CNN.
2021. Tracking Coronavirus’ Global Spread. https://edition.cnn.com/interactive/2020/health/coronavirus-maps-and-cases/
Dong, E., Du, H. & Gardner, L. 2020. An
interactive web-based dashboard to track COVID-19 in real time. The Lancet
Infectious Diseases 20(5): 533-534.
Fanelli, D. & Piazza, F. 2020. Analysis and
forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons
& Fractals 134: 109761.
He, S., Peng, Y. & Sun, K. 2020. SEIR modelling of
the COVID-19 and its dynamics. Nonlinear Dynamics 101(3): 1667-1680.
Howard, J., Huang, A., Li, Z., Tufekci,
Z., Zdimal, V., van der Westhuizen, H.M., von Delft, A., Amy Price, A., Fridman, L., Tang, L-H., Tang, V., Watson, G.L., Bax, C.E., Shaikh, R., Questier, F., Hernandez, D., Chu, L.F., Ramirez, C.M., & Rimoin, A.W. 2021. An evidence review of face masks against COVID-19. Proceedings
of the National Academy of Sciences 118(4): e2014564118.
Kermack, W.O. &
McKendrick, A.G. 1927. A contribution to the mathematical theory of epidemics. Proceedings
of the Royal Society of London Series A: 115(772): 700-721.
Ministry
of Health Malaysia. 2020a. Press Statement MOH: Updates on the COVID-19
Situation in Malaysia. 8 September 2020 http://covid-19.moh.gov.my/terkini/092020/situasi-terkini-08-september-2020/PS%20DG,%20COVID-19%20updates%20(8%20Sept%202020).pdf.
Ministry
of Health Malaysia. 2020b. Annex 2: Management of Suspected, Probable and
Confirmed COVID-19 Case. http://covid-19.moh.gov.my/garis-panduan/garis-panduan-kkm/Annex_2_Management_of_Suspected,_Probable_and_Confirmed_COVID_07102020.pdf
Ministry
of Health Malaysia. 2020c. COVID-19 Unjuran R-Naught Malaysia 17 November 2020. http://covid-19.moh.gov.my/sorotan/112020/unjuran-r-naught-hari-ini-17112020.
Mohd, M.H. & Sulayman, F. 2020. Unravelling the myths of R0 in
controlling the dynamics of COVID-19 outbreak: A modelling perspective. Chaos,
Solitons & Fractals 138: 109943.
Musa, K.I., Arifin, W.N., Mohd, M.H., Jamiluddin, M.S., Ahmad, N.A., Chen, X.W., Hanis, T.M. & Bulgiba, A. 2021. Measuring time-varying effective reproduction numbers for COVID-19 and their relationship with Movement Control Order in Malaysia. International Journal of Environmental Research and Public Health 18(6): 3273.
Odagaki, T. 2020.
Analysis of the outbreak of COVID-19 in Japan by SIQR model. Infectious
Disease Modelling 5: 691-698.
Rampal, L. & Liew,
B.S. 2021. Malaysia's third COVID-19 wave-a paradigm shift required. The
Medical Journal of Malaysia 76(1): 1-4.
Roda, W.C., Varughese,
M.B., Han, D. & Li, M.Y. 2020. Why is it difficult to accurately predict
the COVID-19 epidemic? Infectious Disease Modelling 5: 271-281.
Salman,
A.M., Ahmed, I., Mohd, M.H., Jamiluddin,
M.S. & Dheyab, M.A. 2021. Scenario analysis of
COVID-19 transmission dynamics in Malaysia with the possibility of reinfection
and limited medical resources scenarios. Computers in Biology and Medicine 133: 104372.
Sukumaran,
T. 2020. Coronavirus Malaysia: PM blames Sabah election as among causes of huge
infection surge. The South China Morning Post. https://www.scmp.com/week-asia/health-environment/article/3104421/coronavirus-malaysia-pm-blames-sabah-election-among.
Tang,
K.H.D. 2020. Movement control as an effective measure against Covid-19 spread
in Malaysia: An overview. Journal of Public Health: From Theory to Practice. https://doi.org/10.1007/s10389-020-01316-w.
Tolles, J. & Luong,
T. 2020. Modeling epidemics with compartmental models. JAMA 323(24):
2515-2516.
van
den Driessche, P. 2017. Reproduction numbers of infectious disease
models. Infectious Disease Modelling 2(3): 288-303.
WHO
Coronavirus (2019-nCoV) Report. 2020. Novel Coronavirus (2019-nCoV)
Situation Report. World Health Organization (WHO).
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf.
Worldometers. 2020. COVID-19 Coronavirus Pandemic Cases. https://www.worldometers.info/coronavirus/.
*Corresponding
author; email: mohdhafizmohd@usm.my
|