Sains Malaysiana 39(3)(2010):
453–457
Pencirian
Ruang Jalur Fotonik Nanorod Silikon
(Photonic
Bandgap Characterization of Silicon Nanorods)
Mohd
Syuhaimi Ab Rahman, Noor Azie Azura Binti Mohd Arif*
Jabatan
Elektrik, Elektronik & Sistem, Fakulti Kejuruteraan & Alam Bina
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E., Malaysia
Sahbudin
Shaari
Institute
Kejuruteraan Mikro & Nanoelektronik (IMEN)
Fakulti
Kejuruteraan & Alam Bina, Universiti Kebangsaan Malaysia
43600
Bangi, Selangor, D.E., Malaysia
Diserahkan:
14 Januari 2009 / Diterima: 4 September 2009
ABSTRAK
Hablur
fotonik menjadi tarikan dalam bidang sains dan teknologi berikutan cirinya yang
unik. Kajian ini bertujuan untuk menentukan struktur jalur hablur fotonik
akibat perubahan saiz nanorod silikon. Kajian dijalankan dengan menggunakan
perisian Bandsolve RSoft. Perisian ini menggunakan pendekatan Plane Wave
Expansion Method (PWEM) bagi
mengira struktur jalur fotonik. Saiz nanorod silikon yang digunakan adalah dari
0.5 μm hingga 0.05 μm. Hasil yang didapati menunjukkan hanya pada
saiz 0.1 μm sehingga 0.4 μm sahaja yang mempamerkan kawasan jalur
terlarang.
Kata
kunci: Hablur fotonik; jalur terlarang; nanorod silikon
ABSTRACT
Photonic
crystals become more attractive in science and technology because of their
unique properties. The objective of this research was to study the effect of
the size of silicon nanorod in the photoni band structure. This research was carried
out by using the RSoft BandSOLVE software.
This software uses the Plane Wave Expansion Method (PWEM) to calculate the band structure of
photonic crystal. The silicon nanorods used in this work ranged from 0.05 μm
to 0.5 μm. The results showed that band structure has a forbidden band for
nanorod with size from 0.1 to 0.4 μm.
Keywords:
Forbidden band; photonic crystals; silicon nanorod
RUJUKAN
Andries,
M.J. 2002. Silicon Photonic Crystal and Spontaneous Emission. Ph. D. Thesis
Utrecht University.
Arif,
N.A.A.M., Rahman, M.S.A. & Shaari, S. 2008. The Influence of dielectric in
one dimensional (1D) photonic 457 crystal
band structure: case study. Proceedings of Student Conference on Research
and Development. 191-1-191-4.
Bienstman,
P., Assefa, S., Johnson, S.G. & Joannopoulos, J.D., Petrich, G.S. &
Kolodziejski, L. A. 2003. Taper structures for coupling into photonic crystal
slab waveguide. J. Opt. Soc. Am. 20: 1817-1821.
Chang,
X., Cao, J., Ji, H., Fang, B., Feng, J., Pan, L., Zhang, F. & Wang, H.
2005. Solvotherma Synthesis of 3D Photonic Crystals Based On ZnS/Opal System. Materials
Chemistry and Physics 89: 6-10.
Johnson,
S.G. 2001. Photonic crystals: From theory to practice. Tesis PhD. Massachusetts
Institute of Technology.
Johnson,
S.G. & Joannopoulos, J.D. 2003. Introduction to Photonic Crystal: Bloch’s
Theorem, Band Diagrams and Gaps.
http://ab-initio.mit.edu/photons/tutorial/photonicintro. pdf.
King,
J.S., Heineman, D., Graugnard, E. & Summers, C.J. 2005. Atomic Layer
Deposition In Porous Structures: 3D Photonic Crystals. Applied Surface
Science 244: 511-516.
Liddell,
C.M., Summers, C.J. & Gokhale, A.M. 2003. Stereological estimation of the
morphology distribution of ZnS clusters for photonic crystal applications. Material
Characterization 50: 69-79.
Liddell,
C.M. & Summers, C.J. 2004. Nonspherical ZnS colloidal building blocks for
three-dimensional photonic crystal. Journal of Colloid and Interface 274:
103-106.
Lourtioz,
J.M., Benisty, H., Berger, V., Gerard, J.M., Maystre, D. & Tchelnokov, A.
2005. Photonic Crystals. Berlin Heidelberg: Springer.
Paras,
N.P. 2004. Nanophotonics. New Jersey: Wiley- Interscience.
Ye,
Y.H., Mayer, T.S., Khoo, I.C., Divliansky, I.B., Abrama, N. & Mallouk, T.E.
2002. Self- assembly of three-dimensional photonic-crystals with air-core line
defects. J. Mater. Chem.12: 3637–3639.
*Pengarang
untuk surat-menyurat; email: azieazura_1985@hotmail.com