Sains Malaysiana 43(8)(2014): 1275-1281
On -Quadratic
Stochastic Operators on 2-D Simplex
(-Quadratik Stochastic Pengendali Di Simplex 2-D)
Farrukh Mukhamedov*, Izzat Qaralleh & Wan Nur Fairuz Alwani bt Wan Rozali
Department of Computational & Theoretical Sciences,
Faculty of Science, International Islamic University Malaysia, P.O. Box, 141,
25710, Kuantan, Pahang, Malaysia
Diserahkan:
1 Julai 2013/Diterima: 17 Oktober 2013
Abstract
A quadratic stochastic operator (QSO) is
usually used to present the time evolution of differing species in biology.
Some quadratic stochastic operators have been studied by Lotka and Volterra. The general problem in the nonlinear
operator theory is to study the behavior of operators. This problem was not
fully finished even for quadratic stochastic operators which are the simplest
nonlinear operators. To study this problem, several classes of QSO were
investigated. In this paper, we study the –QSO defined on 2D simplex. We first classify –QSO into 2 non-conjugate classes. Further, we investigate the dynamics of these classes of
such operators.
Keywords: Fixed
point; quadratic stochastic operator
ABSTRAK
Pengendali stokastik kuadratik (QSO) biasanya digunakan
untuk menunjukkan evolusi masa berbeza spesies dalam biologi. Sesetengah
pengendali stokastik kuadratik telah dikaji oleh Lotka dan Volterra.
Masalah umum dalam teori tak linear pengendali adalah untuk mengkaji
tingkah laku pembekal. Masalah ini tidak sepenuhnya siap untuk pengendali
stokastik kuadratik yang merupakan pengendali tak linear yang paling
mudah. Untuk memahami masalah ini, beberapa kelas QSO telah dikaji.
Dalam kertas ini, kami mengkaji – QSO yang ditentukan pada simpleks 2D. Kami mengklasifikasikan – QSO ke
dalam kelas bukan konjugat. Seterusnya, kami mengkaji kedinamikan
kelas pengusaha terbabit.
Kata kunci: Pengendali
stokastik kuadratik; titik tetap
RUJUKAN
Bernstein, S. 1942. Solution of a mathematical problem
connected with the theory of heredity. Annals of Math. Statis. 13: 53-61.
Ganikhodzhaev, R.N. 1994. A chart of fixed points and Lyapunov functions for a class of discrete dynamical
systems. Math. Notes. 56:
1125-1131.
Ganikhodzhaev, R., Mukhamedov,
F. & Rozikov, U. 2011. Quadratic stochastic operators and processes: Results
and open problems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14:
270-335.
Hofbauer, J., Hutson, V. &
Jansen, W. 1987. Coexistence for systems governed by difference equations of Lotka-Volterra type. Jour. Math. Biology 25:
553-570.
Hofbauer, J. & Sigmund, K. 1988. The
Theory of Evolution and Dynamical Systems. Mathematical Aspects
of Selection Cambridge: Cambridge Univ. Press.
Jenks, R.D. 1969. Quadratic
differential systems for interactive population models. Jour. Diff. Eqs 5: 497-514.
Kesten, H. 1970. Quadratic transformations: A model for
population growth.I, II, Adv. Appl .Probab. 2: 1-82, 179-228.
Li, S-T., Li, D-M. & Qu,
G-K. 2006. On stability and chaos of discrete population model for a
single-species with harvesting. Jour. Harbin Univ. Sci. Tech. 6: 021.
Lotka, A.J. 1920. Undamped oscillations derived from the law of mass action. J. Amer. Chem. Soc. 42: 1595-1599.
Lyubich Yu. I. 1992. Mathematical
Structures in Population Genetics. Springer-Verlag,
Mukhamedov, F., & Jamal, A.H.M. 2010. On -quadratic stochastic operators in 2-dimensional
simplex, In Proc. the 6th IMT-GT Conf. Math., Statistics and its Applications (ICMSA2010),
3-4 November. Kuala Lumpur: Universiti Tunku Abdul Rahman. pp. 159-172.
Mukhamedov, F. & Saburov,
M. 2010. On homotopy of volterrian quadratic
stochastic operator. Appl. Math. & Inform. Sci. 4: 47-62.
Mukhamedov, F., Saburov,
M. & Jamal, A.H.M. 2012. On dynamics of -quadratic stochastic operators. Inter.
Jour. Modern Phys.: Conference Series 9: 299-307.
Mukhamedov F., Saburov M., Qaralleh I., On -Quadratic
stochastic operators on two dimensional simplex and their behavior. Abst. Appl. Anal. (in press).
Mukhamedov, F., Saburov,
M. & Qaralleh, I. 2013. Classification of -Quadratic
stochastic operators on 2D simplex. J. Phys.: Conf. Ser. 435:
012003.
Plank, M. & Losert, V.
1995. Hamiltonian structures for the n-dimensional Lotka-Volterra equations, J. Math. Phys. 36: 3520-3543.
Rozikov, U.A. & Zada, A. 2010. On - Volterra quadratic stochastic
operators. Inter. Journal Biomath. 3: 143-159.
Stein, P.R. & Ulam, S.M.
1962. Non-linear Transformation Studies on Electronic
Computers. N.
Mex.: Los Alamos Scientific Lab.
Udwadia, F.E. & Raju, N. 1998. Some global properties of
a pair of coupled maps: quasisymmetry, periodicity
and syncronicity. Physica D 111: 16-26.
Ulam, S.M. 1964. Problems in Modern
Math. New York: Wiley.
Volterra, V. 1927. Lois de fluctuation de la
population de plusieurs espèces coexistant dans le même milieu. Association Franc. Lyon 1926:
96-98.
Zakharevich, M.I. 1978. The behavior of
trajectories and the ergodic hypothesis for quadratic
mappings of a simplex. Russian Math. Surveys 33: 207-208.
*Pengarang untuk surat-menyurat;
email: farrukh_m@iium.edu.my
|