Sains Malaysiana 44(11)(2015): 1551–1559
Preparation
of Durian Skin Nanofibre (DSNF) and Its Effect on the
Properties of Polylactic Acid (PLA) Biocomposites
(Penyediaan Nano-serabut Kulit Durian (DSNF)
dan Kesannya ke atas Sifat Biokomposit Asid Polilaktik (PLA))
M.N. NUR AIMI1*, H. ANUAR1, M. MAIZIRWAN2, S.M. SAPUAN3, M.U. WAHIT4
& S. ZAKARIA5
1Department
of Manufacturing and Materials Engineering, Faculty of Engineering,
International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur,
Wilayah Persekutuan, Malaysia
2Department
of Biotechnology Engineering, Faculty of Engineering, International Islamic
University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Wilayah Persekutuan, Malaysia
3Department of
Mechanical and Manufacturing Engineering, Universiti Putra Malaysia
43400 Serdang, Selangor Darul Ehsan, Malaysia
4Center for Composites,
Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia
5Materials Science
Programme, School of Applied Physics, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul
Ehsan, Malaysia
Diserahkan: 28 Mac 2015/Diterima: 22 June 2015
ABSTRACT
Biological fermentation of Rhizopus oryzae was introduced to extract cellulose
nanofibre from durian skin fibre (DSF). The diameter of the
extracted durian skin nanofibre (DSNF) was in the range of 49-81
nm. The changes of chemical composition of DSNF were
clearly seen after evaluated via TAPPI standard test methods.
Verification via Fourier transform infrared (FTIR)
confirmed the deduction of hemicelluloses and lignin in DSNF in
the range of 1200 to 1000 cm-1. X-ray diffraction (XRD)
demonstrated increment in the crystallinity from 58.3 to 72.2% after biological
fermentation. DSNF was then incorporated into polylactic acid (PLA)
via extrusion and injection moulding processes. The effect of 1-5 wt. % DSNF content on PLA biocomposites was investigated for
its mechanical and thermal properties. The presence of only 1 wt. % improved
the tensile and impact strength by 14.1 MPa and 33.1 kJ/m2,
respectively. The thermal properties of PLA-1DSNF biocomposite also
recorded higher thermal stability, glass transition temperature (Tg),
crystallization temperature (Tc) and melting
temperature (Tm). Additionally, from the DMA,
it was determined that PLA-1DSNF possessed lower storage
modulus and loss modulus, as well as low energy dissipation.
Keywords: Biocomposites; durian skin fibre; durian skin nanofiber;
polylactic acid
ABSTRAK
Fermentasi biologi Rhizopus oryzae telah diperkenalkan bagi mengekstrak nano-serabut
selulosa daripada serabut kulit durian (DSF).
Diameter nano-serabut kulit durian (DSNF)
adalah dalam julat 49-81 nm. Ujian piawaian
kaedah TAPPI
menunjukkan perubahan komposisi kimia DSNF.
Pengesahan melalui transformasi Fourier inframerah
(FTIR)
menunjukkan pengurangan hemiselulosa dan lignin sekitar 1200 hingga
1000 cm-1.
Pembelauan sinar-X (XRD) menunjukkan peningkatan hablur
daripada 58.3 kepada 72.2% selepas fermentasi biologi. Seterusnya, DSNF telah ditambahkan kepada asid polilaktik
(PLA) melalui pemprosesan secara penyemperitan dan pengacuanan
suntikan. Kesan kemasukan DSNF daripada
1-5 wt. % ke atas sifat mekanik dan terma biokomposit PLA telah
dikaji. Kehadiran DSNF serendah
1 wt. % memperbaiki kekuatan regangan dan hentaman, masing-masing
sebanyak 14.1 MPa dan 33.1 kJ/m2. Sifat
terma bio komposit PLA-1DSNF juga merekodkan kestabilan
terma, suhu peralihan kaca (Tg), suhu penghabluran (Tc)
dan suhu peleburan (Tm) yang lebih tinggi. Analisis daripada DMA menunjukkan PLA-1DSNF mempunyai
modulus simpanan dan kehilangan yang lebih rendah, juga kehilangan
tenaga yang rendah.
Kata kunci: Asid polilaktik; biokomposit; nano-serabut kulit durian; serabut kulit durian
RUJUKAN
Albert, S., Padhiar, A. & Gandhi,
D. 2011. Fiber properties
of Sorghum halepense and its suitability for paper production.
J. Natural Fibers 8: 263-271.
Atta, H.M. & Yassen, A.M. 2014.
Phylogenetic characterization, fermentation and biological activities
of an antibiotic producing Streptomyces clavuligerus isolated from
KSA. Int. J. Curr. Microbiol. App. Sci. 3(12): 519-534.
Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M. & Chen, P.
2011. Isolation and characterization of nanofibers from four
plant cellulose fibers using chemical ultrasonic process. Cellulose 18:
433-442.
Damadzadeh, B., Jabari, H., Skrifvars,
M., Airola, K., Moritz, N. & Vallitu, P.K. 2010. Effect of ceramic filler content on
thermal and mechanical behaviour of poly-L-Lactic and poly-
L-lactic-co-glycolic acid composites for medical applications. Journal
of Materials Science 21: 2523-2531.
Dasong, D. & Mizi, F. 2010. Characteristics and performance of
elementary hemp fiber. Materials Sciences and Applications 1:
336-345.
Eichhorn, S.J., Dufresne, A., Aranguren,
M., Marcovich, N.E., Capadona, J.R. & Rowan, S.J. 2010. Review: Current international research into cellulose nanofibers
and nanocomposites. Mater. Science 45: 1-33.
Ho, M., Wang, H., Lee, J.H., Ho, C.K., Lau, K., Leng,
J. & Hui, D. 2012. Critical factors on manufacturing processes
of natural fibre composites. Composites Part B 43: 3549-3562.
Ibrahim, M.M., Dufresne, A., El-Zawawya, W.K. & Aglebor,
F.A. 2010. Banana fibers and microfibrils as lignocellulosic reinforcements
in polymer composites. Carbohydrate Polymers 81: 811-819.
Isroi, Ria Millati, Siti Syamsiah, Claes Niklasson, Muhammad
Nur Cahyanto, Knut Lundquist & Mohammad J. Taherzadeh. 2011. Biological
pre-treatment of lignocelluloses with white rot fungi and its applications: A
review. Bioresources 6(4): 5224-5259.
Janardhnan, S. & Sain, M. 2011. Targeted disruption of hydroxyl chemistry
and crystallinity in natural fibers for isolation of cellulose nanofibers via
enzymatic treatment. Bioresources 6: 1242-1250.
Jonoobi, M., Khazaeian, A., Tahir, P.,
Azry, S.S. & Oksman, K. 2011. Characteristics of cellulose nanofibers isolated from rubberwood and empty
fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:
1085-1095.
Kaiser, M.R., Anuar, H., Samat, A.N. & Abdul Razak, S.
2013. Effect of processing route on mechanical, thermal and
morphological properties of PLA-based hybrid biocomposite. Iranian
Polymer Journal 22(2): 123-131.
Kazimierczak, J., Bloda, A., Wietecha,
J., Ciechanska, D. & Antczak, T. 2012. Research into isolation of cellulose micro and nanofibers from hemp
straw using cellulolytic complex from Aspergillus Niger. Fibres & Textiles in Eastern Europe 6B(96): 40-43.
Kumar, P. & Awasthi, S. 2014. Mechanical
and thermal modelling of ln-Cu composites for thermal interface materials
applications. Journal of Composite Materials 48(11): 1391- 1398.
Mamun, A.A. & Bledzki, A.K. 2013. Micro fibre reinforced
PLA and PP composites: Enzyme modification, mechanical and thermal properties. Composites
Science and Technology 78: 10-17.
Manshor, M.R., Anuar, H., Nur Aimi, M.N., Ahmad Fitrie,
M.I., Wan Nazri, W.B., Sapuan, S.M., El-Shekeil, Y.A. & Wahit, M.U. 2014.
Mechanical, thermal and morphological properties of durian skin fibre
reinforced PLA biocomposites. Materials and Design 59: 279-286.
Meng, Q.K., Hetzer, M. & De Kee, D. 2011. PLA/clay/wood
nanocomposites: Nanoclay effect on mechanical and thermal properties. Journal
of Composite Materials 45(10): 1145- 1158.
Mohammad, N.N.B. & Arsad, A. 2013. Mechanical, thermal
and morphological study on kenaf fibre reinforced rpet/ABS composites. Malaysian
Polymer Journal 8(1): 8-13.
Ndiaye, D. & Tidjani, A. 2012. Effects of coupling
agents on thermal behaviour and mechanical properties of wood flour/
polypropylene composites. Journal of Composites Materials 46(24):
3067-3075.
Nur Aimi, N., Anuar, H., Manshor, M.R.,
Wan Nazri, W.B. & Sapuan, S.M. 2014. Optimizing the parameters in durian skin fiber reinforced polypropylene
composites by response surface methodology. Industrial Crops and Products 54:
291-295.
Nur Aimi, M.N., Mohd Adlan, M.K., Nurhafizah, S.M., Anuar,
H., Mel, M. & Othman, R. 2011. Effect of Rhizopus Oryzae fermentation
on kenaf based polylactic acid’s monomer. IIUM Engineering Journal (Special
Issue on Biotechnology) 12(4): 83-87.
Sahan, Y. 2011. Effect of Prunus lauroceranus L.
(Chery Laurel), leaf extracts on bread spoilage fungi. Bulgarian Journal of
Agriculture Science 17(1): 83-92.
Segal, L., Creely, J.J., Martin Jr., A.E. & Conrad, C.M.
1959. An empirical method for estimating the degree of
crystallinity of native cellulose using the X-Ray diffractometer. Textile
Research Journal 29: 786-794.
Shahzad, A. 2011. Hemp fibre and its composites - A review. Journal of
Composite Materials 46(8): 973-986.
Siqueira, G., Bras, J. & Dufresne,
A. 2010. Cellulosic bionanocomposites: A review of preparation,
properties and applications. Polymer 2: 728-765.
Siregar, J.P., Sapuan,
S.M., Rahman, M.Z.A. & Zaman, H.M.D.K. 2012. Effects of alkali treatments
on the tensile properties of pineapple leaf fibre reinforced high impact
polystyrene composites. Pertanika Journal of Science and Technology 20(2):
409-414.
Siyamak, S., Ibrahim, N.A., Abdolmohammadi, S., Wan Yunus,
W.M.Z. & Rahman, A.B. 2012. Enhancement of mechanical and thermal
properties of oil palm empty fruit bunch fibre poly(butylenesadipate-co-terephtalate)
biocomposites by matrix esterification using succinic anhydride. Molecules 17(2):
1969-1991.
Tsukamoto, J., Duran, N. & Tasic, L. 2013. Nanocellulose
and bioethanol production from orange waste using isolated microorganisms. Journal
of Brazilian Chemical Society 24(9): 1537-1543.
*Pengarang
untuk surat-menyurat; email: aimi_nasir@ymail.com
|