Sains Malaysiana 44(11)(2015): 1573–1577
Synthesis
of Oil Palm Empty Fruit Bunch (EFB) Derived Solid Acid Catalyst for Esterification
of Waste Cooking Oils
(Sintesis Mangkin Asid Pepejal daripada Tandan Buah Kosong (EFB) Kelapa Sawit untuk Pengesteran Sisa
Minyak Masak)
KOGULESHUN, S1., FEI-LING, PUA1,2.,* NABIHAH, S3., CHIN-HUA, CHIA3 & SHAMALA, G.1
1Department
of Mechanical Engineering, Universiti Tenaga National, Jalan IKRAM-UNITEN
43000 Kajang, Selangor Darul Ehsan, Malaysia
2Centre
of Renewable Energy, Universiti Tenaga National, Jalan IKRAM-UNITEN
43000 Kajang, Selangor Darul Ehsan, Malaysia
3School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 28 Mac 2015/Diterima: 6 Julai 2015
ABSTRACT
Oil palm empty fruit bunch (EFB) contributes to a large quantity
of lignocellulosic waste. It is an abundantly available waste biomass
in Malaysia. This project was aimed to utilize the waste materials
for a better benefit. EFB were used as raw material to prepare a new solid catalyst
for biodiesel production. Solid acid catalyst derived from EFB
was used to catalyze the esterification process in
biodiesel production from waste cooking oil. Solid acid catalyst
was prepared by direct impregnation with transition metal sulfides,
Fe2(SO4)3.
This new catalyst was used to catalyze the esterification of high
free fatty acid (FFA) value oil, e.g. waste cooking oils (WCOs)
as pre-treatment step prior to biodiesel production. The highest
catalytic activity with 90.95% esterification rate was achieved.
The catalyst can be easily separated for reuse compared to homogenous
catalyst which are used in biodiesel production. EFB has the potential to be converted
into useful feedstock and the derived catalyst can replace the traditional
liquid acid catalyst in biodiesel production especially for high
acid value content feedstock.
Keywords: Acid value; catalyst; esterification; oil palm empty
fruit bunch; solid acid catalyst
ABSTRAK
Tandan kosong kelapa sawit (EFB)
telah menyumbang sisa lignosellulosik dalam kuantiti yang banyak di Malaysia. Objektif penyelidikan ini
adalah untuk mempergunakan bahan buangan tersebut untuk faedah yang lebih baik. EFB telah digunakan sebagai bahan
mentah untuk menyediakan mangkin pepejal baru dalam penghasilan biodiesel. Mangkin asid pepejal yang diperoleh daripada EFB telah
digunakan untuk memangkinkan proses pengesteran dalam penghasilan biodiesel
daripada sisa minyak masak. Mangkin asid pepejal telah disediakan melalui
impregnasi terus dengan sulfida logam peralihan Fe2(SO4)3. Mangkin baru ini telah digunakan untuk memangkinkan
pengesteran minyak bebas asid lemak berkualiti tinggi seperti sisa minyak masak
(WCO)
sebagai langkah rawatan awal sebelum penghasilan biodiesel. Aktiviti
mangkinan yang tinggi dengan 90.95% kadar pengesteran
telah dicapai. Mangkin ini mudah dipisahkan untuk digunakan
semula jika dibandingkan dengan mangkin homogen yang digunakan dalam
penghasilan biodiesel. EFB berpotensi
ditukar menjadi stok suapan dan mangkin yang diperoleh boleh menggantikan
mangkin asid cecair tradisi dalam penghasilan biodiesel terutama untuk nilai
asid tinggi kandungan stok suapan.
Kata kunci: Mangkin; mangkin asid pepejal; nilai
asid; pengesteran; tandan kosong kelapa sawit
RUJUKAN
Amin, T.K., Nor Aishah,
S.A. & Hossein, M. 2013. A review on novel
processes of biodiesel production from waste cooking oil. Applied Energy 104:
683-710.
Ariza, M.J., Jones, D.J. & Roziere, J. 2002.
Role of post sulfonation thermal treatment in conducting and thermal properties of sulfuric acid sulfonated
poly (benzimidazole) membranes. Desalination 147: 183-189.
Baharuddin, A.S., Sulaiman,
A., Kim, D.H., Mokhtar, M.N., Hassan, M.A., Wakisaka, M., Shirai, Y. &
Nishida, H. 2013. Selective component
degradation of oil palm empty fruit bunches (OPEFB) using high-pressure steam. Biomass
and Bioenergy 55: 268-275.
Chen, G. & Fang, B. 2011. Preparation
of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresource Technology 102: 2635-2640.
Christie, W.W. 1993. Preparation
of ester derivatives of fatty acids for chromatographic analysis. Advances
in Lipid Methodology 2: 69-111.
Deng, X., Fang, Z., Liu,
Y.H. & Yu, C.L. 2011. Production of biodiesel from Jatropha oil
catalyzed by nanosized solid basic catalyst. Energy 36: 777-784.
Economic Transformation Programme (ETP). 2013.
Annual Report. http://etp.pemandu.gov.my/annualreport2013/. Accessed on 5th
July 2015.
Guo, F., Fang, Z., Tian, X.F., Long, Y.D. &
Jiang, L.Q. 2011. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids. Bioresource Technology 102: 6469-6472.
Lou, W.Y., Zong, M.H. &
Duan, Z.Q. 2008. Efficient production of
biodiesel from high free fatty acid containing waste oils using various
carbohydrate-derived solid acid catalysts. Bioresource Technology 99:
8752-8758.
Lu, H., Liu, Y., Zhou, H.,
Yang, Y., Chen, M. & Liang, B. 2009. Production of biodiesel from Jatropha curcas L. oil. Computers & Chemical Engineering 33: 1091-1096.
Pua, F.L., Zakaria, S., Chia, C.H., Fan, S.P.,
Thomas, R., Antje, P. & Liebner, F. 2013. Solvolytic liquefaction of oil
palm empty fruit bunch (EFB) fibres: Analysis of product fractions using FTIR
and Pyrolysis- GCMS. Sains Malaysiana 42(6): 793-799.
Pua, F.L., Fang, Z., Zakaria, S., Chia, C.H.
& Guo, F. 2011. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnology for
Biofuel 4: 56-63.
Shu, Q., Gao, J., Nawaz,
Z., Liao, Y., Wang, D. & Wang, J. 2010. Synthesis of biodiesel from
waste vegetable oil with large amounts of free fatty acids using a carbon-based
solid acid catalyst. Applied Energy 87: 2589-2596.
Suganuma, S., Nakajima, K., Kitano, M.,
Yamaguchi, D., Kato, H., Hayashi, S. & Hara, M. 2008. Hydrolysis
of cellulose by amorphous carbon bearing SO3H,
COOH, and OH groups. Journal of the American Chemical Society 130:
12787-12793.
Tiwari, A.K., Kumar, A. & Raheman, H. 2007.
Biodiesel production from Jatropha oil (Jatropha curcas) with
high free fatty acids: An optimized process. Biomass & Bioenergy 31:
569-575.
Veera, G.G. & Georgene,
E.G. 2013. Biodiesel
from waste cooking oils via direct sonication. Applied Energy 109:
135-144.
Wang, L., Dong, X., Jiang,
H., Li, G. & Zhang, M. 2014. Preparation of a novel carbon-based solid acid from cassava
stillage residue and its use for the esterification of free fatty acids in
waste cooking oil. Bioresource Technology 158: 392-395.
Yee, K.F., Wu, J.C.S. & Lee, K.T. 2011. A
green catalyst for biodiesel production from Jatropha oil: Optimization
study. Biomass & Bioenergy 35: 1739-1746.
Zakaria, S., Liew,
T.K., Chia, C.H., Fan, S.P., Roslan, R., Amran, U.A., Rosenau, T., Antje, P.
& Liebner, F. 2013. Characterization of Fe2O3/FeOOH catalyzed solvolytic liquefaction
of oil palm empty fruit bunch (EFB) products. Bioremediation &
Biodegradation S4: 1-7.
*Pengarang
untuk surat-menyurat; email: feilingpua@yahoo.com
|