Sains Malaysiana 44(6)(2015):
801–810
Effects of Silane Surface Treatment of
Cellulose Nanocrystals on the Tensile Properties
of Cellulose-Polyvinyl Chloride
Nanocomposite
(Kesan Rawatan Permukaan Nanohablur Selulosa
dengan Silana ke atas Sifat Regangan Nanokomposit Selulosa-Polivinilklorida)
RASHA M. SHELTAMI1,2, HANIEH KARGARZADEH1 & IBRAHIM ABDULLAH1*
1Faculty of Science and
Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
2Chemistry Department,
Faculty of Science, University of Benghazi, Benghazi, Libya
Diserahkan: 15 Januari
2014/Diterima: 15 November 2014
ABSTRACT
Cellulose nanocrystals (CNC)
from mengkuang leaves (Pandanus tectorius) were investigated as potential
reinforcement in poly(vinyl chloride)
(PVC)
matrix. The surface of CNC was modified with silane coupling
agent to improve filler-matrix adhesion. Solution casting method
was used to prepare PVC nanocomposites with various amounts of modified (SCNC)
and unmodified (CNC) nanocrystals. Both SCNC
and CNC were examined by Fourier transform
infrared (FTIR) spectroscopy and X-ray diffraction (XRD)
which showed that surface chemical modification has occurred. An
increase in tensile strength was observed with the addition of SCNC compared
to the CNC. However, the elongation at break of the nanocomposites
was found to decrease with the increase of both fillers loading.
An increasing trend was observed in the tensile modulus with the
addition of CNC
to the PVC matrix, but decreasing with the addition of SCNC.
The morphology of a fractured surface of nanocomposites showed silane
modification reduced the number of voids in the structure of PVC.
The observation indicated the adhesion between the fiber and the
matrix had improved upon surface modification of the nanocrystals
with silane.
Keywords: Cellulose nanocrystals;
nanocomposite; poly(vinyl chloride); silane
modification
ABSTRAK
Potensi
nanohablur selulosa (CNC) daripada daun mengkuang (Pandanus
tectorius) sebagai pengisi penguat bagi matriks polivinil klorida (PVC)
telah dikaji. Permukaan CNC telah
di rawat dengan agen pengkupel silana bagi meningkatkan lekatan
pengisi-matriks. Nanokomposit PVC dengan
pelbagai amaun selulosa terawat (SCNC) dan CNC telah
disediakan secara larutan tuangan. Penelitian ke atas CNC dan SCNC yang dilakukan secara spektroskopi transformasi Fourier
inframerah dan pembiasan X-ray (XRD) menunjukkan modifikasi
kimia berlaku ke atas permukaan selulosa. Kekuatan
regangan ketara meningkat dengan pertambahan SCNC berbanding CNC tetapi pemanjangan takat putus komposit menurun dengan
pertambahan kedua-dua pengisi. Walau bagaimanapun
berlaku tren peningkatan bagi modulus regangan dengan pertambahan CNC tetapi
menurun dengan SCNC. Morfologi
permukaan patah komposit menunjukkan rawatan silana mengurangkan bilangan
rongga terjadi dalam matriks. Pemerhatian ini
menunjukkan penambahbaikan dalam lekatan pengisi-matriks selepas rawatan
permukaan dengan silana.
Kata
kunci: Nanohablur selulosa; nanokomposit; polivinil klorida; rawatan silana
RUJUKAN
Abu Bakar, A. &
Baharulrazi, N. 2008. Mechanical properties of benzoylated oil palm empty fruit
bunch short fiber reinforced poly(vinyl chloride)
composites. Polymer-Plastics Technology and Engineering 47(10):
1072-1079.
Azizi Samir, M.A.S.,
Alloin, F. & Dufresne, A. 2005. Review of recent research into cellulosic
whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2): 612-626.
Battista, O.A. &
Smith, P.A. 1962. Microcrystalline cellulose. Industrial & Engineering
Chemistry 54(9): 20-29.
Beck-Candanedo,
S., Roman, M. & Gray, D.G. 2005. Effect of reaction conditions
on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2): 1048-1054.
Belgacem, M.N. &
Gandini, A. 2008. Surface modification of cellulose fibres. In. Monomers, Polymers and Composites from Renewable Resources, edited
by Belgacem, M.N. & Gandini, A. Amsterdam: Elsevier. pp. 385-400.
Ben Mabrouk, A.,
Kaddami, H., Magnin, A., Belgacem, M.N., Dufresne, A. & Boufi, S. 2011.
Preparation of nanocomposite dispersions based on cellulose whiskers and
acrylic copolymer by miniemulsion polymerization: Effect of the silane content. Polymer Engineering & Science 51(1): 62-70.
Bledzki, A.K. &
Gassan, J. 1999. Composites reinforced with cellulose based fibres. Progress
in Polymer Science 24(2): 221-274.
Bondeson,
D., Mathew, A. & Oksman, K. 2006. Optimization of the isolation
of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2): 171-180.
Cao,
X., Dong, H. & Li, C.M. 2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in
waterborne polyurethane. Biomacromolecules 8(3): 899-904.
Chand, N. & Jhod, B.D. 2008. Mechanical, electrical, and
thermal properties of maleic anhydride modified rice husk filled PVC
composites. BioResources 3(4): 1228-1243.
Chenampulli,
S., Unnikrishnan, G., Sujith, A., Thomas, S. & Francis, T. 2013. Cellulose
nano-particles from Pandanus: Viscometric and crystallographic studies. Cellulose 20(1): 429-438.
Cherian,
B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A. & Kottaisamy, M.
2010. Isolation of nanocellulose from pineapple leaf fibres by
steam explosion. Carbohydrate Polymers 81(3): 720-725.
de Oliveira Taipina, M.,
Ferrarezi, M.M.F., Yoshida, I.V.P. & do Carmo Gonçalves, M. 2013. Surface modification of cotton nanocrystals with a silane agent. Cellulose 20(1): 217-226.
Deepa, B., Abraham, E.,
Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Leao, A.L., de Souza,
S.F. & Kottaisamy, M. 2011. Structure, morphology and thermal
characteristics of banana nano fibers obtained by steam explosion. Bioresource
Technology 102(2): 1988-1997.
Dufresne,
A. 2012. Nanocellulose: From Nature to High Performance Tailored Materials.
Berlin, Germany: Walter de Gruyter GmbH.
Ebeling,
T., Paillet, M., Borsali, R., Diat, O., Dufresne, A., Cavaillé, J.Y. &
Chanzy, H. 1999. Shear-induced orientation phenomena in suspensions of cellulose microcrystals,
revealed by small angle X-ray scattering. Langmuir 15(19): 6123-6126.
Eichhorn, S.J.,
Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J.,
Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S.,
Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A.,
Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A. & Peijs, T. 2010.
Review: Current international research into cellulose nanofibres and
nanocomposites. Journal of Materials Science 45(1): 1-33.
Esckilsen,
B. 2008. Global PVC markets: Threats and opportunities. Plastics, Additives and
Compounding 10(6): 28-30.
Favier,
V., Canova, G.R., Cavaille, J.Y., Chanzy, H., Dufresne, A. & Gauthier, C.
1995a. Nanocomposite materials from latex and cellulose whiskers. Polymers for Advanced Technologies 6: 351-355.
Favier,
V., Chanzy, H. & Cavaille, J. Y. 1995b. Polymer nanocomposites
reinforced by cellulose whiskers. Macromolecules 28: 6365-6367.
Garcia de Rodriguez,
N.L., Thielemans, W. & Dufresne, A. 2006. Sisal cellulose whiskers
reinforced polyvinyl acetate nanocomposites. Cellulose 13(3): 261-270.
Giesen,
W., Wulffraat, S., Zieren, M. & Scholten, L. 2007. Mangrove
Guidebook for Southeast Asia. The Netherlands: FAO and Wetlands
International.
Goussé,
C., Chanzy, H., Excoffier, G., Soubeyrand, L. & Fleury, E. 2002. Stable suspensions of
partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9): 2645-2651.
Grunert,
M. & Winter, W. 2002. Nanocomposites of cellulose acetate butyrate
reinforced with cellulose nanocrystals. Journal of Polymers and the
Environment 10(1-2): 27-30.
Grunert,
M. & Winter, W. 2000. Progress in the development of cellulose
reinforced nanocomposites. Polymeric Materials: Science and Engineering 82:
232-232.
Habibi, Y. 2014. Key
advances in the chemical modification of nanocelluloses. Chemical Society
Reviews 43(5): 1519-1542.
Habibi, Y., Lucia, L.A.
& Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and
applications. Chemical Reviews 110(6): 3479-3500.
Habibi,
Y., Goffin, A.L., Schiltz, N., Duquesne, E., Dubois, P. & Dufresne, A.
2008. Bionanocomposites based on poly(ε-
caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal
of Materials Chemistry 18(41): 5002-5010.
Hassan, M.M. & Khan,
M.A. 2008. Role of N-(β-amino ethyl)
γ-aminopropyl trimethoxy silane as coupling agent on the
jute-polycarbonate composites. Polymer-Plastics Technology and Engineering 47(8):
847-850.
Helbert,
W., Cavaillé, J.Y. & Dufresne, A. 1996. Thermoplastic
nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing
and mechanical behavior. Polymer Composites 17(4): 604-611.
Hon, D.N.S. &
Shiraishi, N. 2001. Wood and Cellulosic Chemistry. 2nd ed. New York: Marcel Dekker, Inc.
Jannah, M. 2008. Studies
on the properties of woven natural fibers reinforced unsaturated polyster
composites. M.Sc. Thesis, Universiti Sains Malaysia (unpublished).
Jiang, H. & Kamdem,
D. P. 2004. Development of poly(vinyl chloride)/wood
composites. A literature review. Journal of Vinyl
and Additive Technology 10(2): 59-69.
Johar,
N., Ahmad, I. & Dufresne, A. 2012. Extraction, preparation and
characterization of cellulose fibres and nanocrystals from rice husk. Industrial
Crops and Products 37(1): 93-99.
Kargarzadeh,
H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. & Sheltami, R.
2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal
stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3): 855-866.
Katz, H.S. &
Mileski, J. 1987. Handbook of Fillers for Plastics. New York: Springer.
Lavoine,
N., Desloges, I., Dufresne, A. & Bras, J. 2012. Microfibrillated
cellulose - Its barrier properties and applications in cellulosic materials: A
review. Carbohydrate Polymers 90(2): 735-764.
Li,
R., Fei, J., Cai, Y., Li, Y., Feng, J. & Yao, J. 2009. Cellulose whiskers
extracted from mulberry: A novel biomass production. Carbohydrate Polymers 76(1):
94-99.
Lu, P. & Hsieh, Y.L.
2012. Preparation and characterization of cellulose nanocrystals from rice
straw. Carbohydrate Polymers 87(1): 564-573.
Mallick, P.K. 2008. Fiber-reinforced
Composites: Materials, Manufacturing, and Design. Boca Raton: CRC press.
Mariatti,
M., Jannah, M., Bakar, A.A. & Khalil, H.A. 2008. Properties of banana
and pandanus woven fabric reinforced unsaturated polyester composites. Journal
of Composite Materials 42(9): 931-941.
Matuana,
L.M., Balatinecz, J.J. & Park, C.B. 1998a. Effect
of surface properties on the adhesion between PVC and wood veneer laminates. Polymer Engineering & Science 38(5): 765-773.
Matuana,
L.M., Woodhams, R.T., Balatinecz, J.J. & Park, C.B. 1998b. Influence of
interfacial interactions on the properties of PVC/cellulosic fiber composites. Polymer
Composites 19(4): 446-455.
Moran,
J.I., Alvarez, V.A., Cyras, V.P. & Vazquez, A. 2008. Extraction
of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1): 149-159.
Pacheco, D.M., Johnson,
J.R. & Koros, W.J. 2011. Aminosilane-functionalized
cellulosic polymer for increased carbon dioxide
sorption. Industrial & Engineering Chemistry Research 51(1):
503-514.
Pavia,
D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.R. 2009. Introduction
to Spectroscopy. 4th ed. The USA: Cengage
Learning.
Raju,
G., Ratnam, C.T., Ibrahim, N.A., Rahman, M.Z.A. & Yunus, W.M.Z.W. 2008. Enhancement of PVC/ENR
blend properties by poly(methyl acrylate) grafted oil
palm empty fruit bunch fiber. Journal of Applied Polymer Science 110(1):
368-375.
Ratnam, C.T., Radin,
S.F. & Shamsuddin, S. 2010. Mechanical properties of rubber-wood fiber
filled PVC/ENR blend. Malaysian Polymer Journal 5(1): 17-25.
Rosa, M.F., Medeiros,
E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G.,
Orts, W.J. & Imam, S.H. 2010. Cellulose nanowhiskers from coconut husk fibers:
Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate
Polymers 81(1): 83-92.
Segal, L., Creely, J.J.,
Martin, A.E. & Conrad, C.M. 1959. An empirical method for
estimating the degree of crystallinity of native cellulose using the X-Ray
diffractometer. Textile Research Journal 29(10): 786-794.
Sheltami, R.M.,
Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. 2012. Extraction of
cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate
Polymers 88(2): 772-779.
Shu,
H., Liu, K., Liu, F., Zhang, Z. & Li, X. 2013. Improving mechanical
properties of poly(vinyl chloride) by doping with
organically functionalized reactive nanosilica. Journal of Applied Polymer
Science 129(5): 2931-2939.
South, C.R. 2008.
Polymer side-chains as arms for molecular recognition. The Academic Faculty,
Georgia Institute of Technology, Atlanta.
Wambua,
P., Ivens, J. & Verpoest, I. 2003. Natural fibres: Can they replace glass
in fibre reinforced plastics? Composites Science and Technology 63(9):
1259-1264.
Weon, J.I. & Sue,
H.J. 2005. Effects of clay orientation and aspect ratio on
mechanical behavior of nylon-6 nanocomposite. Polymer 46(17):
6325-6334.
Wirawan,
R., Zainudin, E.S. & Sapuan, S.M. 2009. Mechanical properties
of natural fibre reinforced PVC composites: A review. Sains Malaysiana 38(4):
531-535.
Xie, Y., Hill, C.A.,
Xiao, Z., Militz, H. & Mai, C. 2010. Silane coupling agents used for
natural fiber/polymer composites: A review. Composites Part A: Applied Science
and Manufacturing 41 (7): 806-819.
*Pengarang untuk surat-menyurat; email: dia@ukm.edu.my
|