Sains Malaysiana 44(7)(2015): 1041–1051
Asymptotic
Properties of the Straight Line Estimator for a Renewal Function
(Sifat Asimptot bagi
Penganggar Garis Lurus untuk Fungsi Pembaharuan)
ESRA GÖKPINAR1*,
TAHIR
KHANIYEV2,3
& HAMZA GAMGAM1
1Gazi University,
Department of Statistics, 06500 Teknikokullar, Ankara, Turkey
2Department of Industrial
Engineering, TOBB University of Economics
and Technology
06500 Sogutozu,
Ankara, Turkey
3Institute of Cybernetics
of Azerbaijan, National Academy of Sciences, Az 1141, Baku
Azerbaijan
Diserahkan: 15
Julai 2013/Diterima: 5 Februari 2015
ABSTRACT
In estimation problems in renewal
function, when the distribution is not known, nonparametric estimators
of renewal function are used. Frees (1986a, Warranty analysis and
renewal function estimation, Naval Res. Logist. Quart, 33, 361-372)
proposed the nonparametric estimator of renewal function for large
values of t. Frees’s estimator is easy to apply in practice. It
is a preferred estimator for large values of t. However, its statistical
properties still have not been investigated in detailed. For this
reason, in this study, we investigate asymptotic properties of this
estimator such as consistency, asymptotic unbiasedness and asymptotic
normality. Also Monte Carlo simulation study is given to assess
the performance of this estimator according to value of renewal
function. Simulation results indicate that in the large values of
t, Frees estimator is sufficiently close to the renewal function
for the Gamma distribution with various parameters.
Keywords: Asymptotic normality;
asymptotic unbiasedness; consistency; nonparametric estimator; renewal
function
ABSTRAK
Masalah anggaran dalam fungsi
pembaharuan, apabila pengagihan tidak diketahui, penganggar tidak
parametrik fungsi pembaharuan digunakan. Frees (1986a, analisis
waranti dan anggaran fungsi pembaharuan, Naval Res. Logist. Quart,
33, 361-372) mencadangkan penganggar tidak parametrik fungsi pembaharuan
bagi nilai besar t. Penganggar Frees adalah mudah untuk digunakan
dalam amalan. Ia penganggar yang diutamakan bagi nilai besar t.
Walau bagaimanapun, sifat statistiknya masih tidak dikaji dengan
lebih mendalam. Untuk alasan ini, dalam kajian ini, kami mengkaji
sifat asimptot penganggar ini seperti konsistensi, kesaksamaan asimptot
dan kenormalan asimptot. Juga kajian simulasi Monte Carlo digunakan
untuk menilai prestasi penganggar ini mengikut nilai fungsi pembaharuan.
Hasil simulasi menunjukkan dalam nilai besar t, penganggar Frees
hampir dengan fungsi pembaharuan agihan Gama dengan pelbagai parameter.
Kata kunci: Fungsi pembaharuan; kenormalan asimptot; ketaksamaan
asimptot; konsisten; penganggar tak parametric
RUJUKAN
Aydoğdu, H.
1997. Estimation in Renewal Process. Ph.D. Thesis, Ankara University,
Ankara, Turkey (unpublished).
Bebbington, M.,
Davydov, Y. & Zitikis, R. 2007. Estimating the renewal function
when the second moment is infinite. Stochastic Models 23:
27-48.
Casella, G. &
Berger, R.L. 2002. Statistical Inference. 2nd ed. Pacific
Grove, CA, Duxbury/Thomson Learning.
Feller, W. 1971.
An Introduction to Probability Theory and Its Applications.
Vol. 2. New Jersey: Wiley.
Frees, E.W. 1986a.
Warranty analysis and renewal function estimation. Naval Res.
Logist. Quart. 33: 361-372.
Frees, E.W. 1986b.
Nonparametric renewal function estimation. Ann. Statist. 14(4):
1366-1378.
Grübel, R. &
Pitts, S. 1993. Nonparametric estimation in renewal theory 1: The
empirical renewal function. Ann. Statist. 21(3): 1431-1451.
Guedon, Y. &
Cocozza-Thivent, C. 2003. Nonparametric estimation of renewal processes
from count data. The Canadian Journal of Statistics 31(2):
191-223.
Hoog, R.V., Craig,
A. & Mckean, J.W. 2005. Introduction to Mathematical Statistics.
6th ed. New Jersey: Pearson Prentice Hall.
Karlin, S. &
Taylor, H. 1975. A First Course in Stochastic Process. New
York: Academic Press.
Khaniyev, T., Kokangül,
A. & Aliyev, R. 2013. An asymptotic approach for a semi-markovian
inventory model of type (s, S). Applied Stochastic Models in
Business and Industry 29: 439-453.
Khaniyev, T. &
Atalay, K. 2010. On the weak convergence of the ergodic distribution
for an inventory model of type (s, S). Hacettepe Journal of Mathematical
and Statistic 39(4): 599-611.
Khaniev, T. &
Mammadova, Z. 2006. On the stationary characteristics of the extended
model of type (s, S) with Gaussian distribution of summands. Journal
of Statistical Computation and Simulation 76(10): 861-874.
Lehmann, E.L. 1998.
Elements of Large Samples Theory. New York: Springer.
Markovich, M.N.
& Krieger, R.U. 2006. Nonparametric estimation of the renewal
function by empirical data. Stochastic Models 22: 175-199.
Ross, M.R. 1996.
Stochastic Processes. New Jersey: John Wiley.
Roussas, G.G. 1997.
A Course in Mathematical Statistics. 2nd ed. New York: Academic
Press.
Schneider, H.,
Lin, B.S. & O’cinneide, C. 1990. Comparison of nonparametric
estimators for the renewal function, J. Roy. Statist. Soc. Ser.
C 39: 55-61.
Tijms, H.C. 2003.
A First Course in Stochastic Models. New Jersey: John Wiley.
Vardi, Y. 1982.
Nonparametric estimation in renewal processes. Ann. Statist.
10: 772-785.
Zhao, Q. &
Rao, S.S. 1997. Nonparametric renewal function estimation based
on estimated densities. Asia-Pacific J. Oper. Res. 14: 115-120.
*Pengarang untuk surat-menyurat; email:
eyigit@gazi.edu.tr
|