Sains Malaysiana 44(9)(2015): 1351–1356
Pore
Interconnectivity Analysis of Porous Three Dimensional Scaffolds of Poly
(3-Hydroxybutyric Acid) (PHB) and Poly(3-Hydroxybutyric-co-3-Hydroxyvaleric
Acid) (PHBV) Through Non-Invasive Color Staining Method
(Analisis
Kebolehjaringan Liang bagi Struktur Perancah Tiga Dimensi Poly(3-Hydroxybutyric
Acid) (PHB) dan
Poly(3-Hydroxybutyric-co-3-Hydroxyvaleric Acid) (PHBV)
melalui Kaedah Pengotoran Warna tidak Invasi)
SAIFUL IRWAN ZUBAIRI1, ATHANASIOS MANTALARIS2*
& ALEXANDER BISMARCK2
1School of Chemical
Sciences & Food Technology, Faculty of Science & Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul
Ehsan, Malaysia
2Department of
Chemical Engineering, Imperial College London, South Kensington Campus, London
SW7 2AZ, United Kingdom
Diserahkan: 14 November 2013/Diterima: 3 Jun 2015
ABSTRACT
Polyhydroxyalkanoates (PHAs) has been investigated for
more than eighty years. Ever since then, the scientists are kept on
synthesizing and developing new polymers and application to suit human
interests nowadays. The resourcefulness of PHAs
has made them a good candidates for the study of their potential in a variety
of areas from biomedical/medical fields to food, packaging, textile and household
material. In medical field (specifically in tissue engineering application),
producing a biocompatible 3-D scaffold with adaptable physical properties are
essential. However, to the best of our knowledge, scaffolds from PHB and PHBV with thickness greater than 1 mm have not been produced yet. In
this work, PHB and PHBV porous 3-D scaffolds with
an improved thickness greater than 4 mm was fabricated using conventional
method of solvent-casting particulate-leaching (SCPL).
A preliminary assessment on the improved thickness 3-D scaffolds was carried
out to examine its pore interconnectivity by using non-invasive color staining
method. The vertical cross sections image of the stained scaffolds was analyzed
by image analyzer software. This technique was considered simple, fast and cost
effective method prior to the usage of super accurate analytical instruments
(micro-computed tomography). The results showed that over 80% of the pores have
been interconnected with the adjacent pores. Moreover, there was a good
correlation between the predicted pore interconnectivity and porosity. These
results indicated how well a simple technique can do by giving an overview of
the internal morphology of a porous 3-D structure material.
Keywords: Color staining; PHBV; PHB;
pore interconnectivity; 3-D scaffold
ABSTRAK
Polyhydroxyalkanoates (PHAs) telah dikaji lebih dari
80 tahun yang lalu. Semenjak dari itu, para saintis sentiasa mensintesis dan
membangunkan polimer dan aplikasi baru bagi kemudahan dan penggunaan manusia sekarang.
Kepelbagaian penggunaan PHAs telah menjadikan bahan tersebut
sebagai calon yang sesuai dalam mengkaji pelbagai potensi daripada bidang
bioperubatan/perubatan ke makanan, pembungkusan, tekstil dan bahan penggunaan
di rumah. Dalam bidang perubatan (terutama sekali dalam aplikasi kejuruteraan
tisu, penghasilan struktur perancah 3-D yang bioserasi dengan pengadaptasian
ciri fizikal adalah penting. Tetapi, sehingga kini, masih tiada lagi struktur
perancah daripada PHB dan PHBV dengan
ketebalan melebihi 1 mm dapat dihasilkan. Dalam kajian ini, struktur perancah
3-D PHB dan PHBV dengan penambahbaikan
ketebalan melebihi 4 mm telah dapat difabrikasi menggunakan kaedah konvensional
pelarut-pembentuk larut serap partikulat (SCPL).
Penilaian awalan terhadap struktur perancah 3-D telah dijalankan bagi menilai
kebolehjaringan liang menggunakan kaedah pengotoran warna tidak invasi. Imej
keratan rentas bagi struktur perancah yang dikotorkan dianalisis menggunakan
perisian penganalisis imej. Kaedah ini dianggap mudah, pantas dan kos efektif
sebelum penggunaan peralatan analitikal canggih (seperti tomografi mikro
berkomputer). Keputusan kajian menunjukkan bahawa lebih 80% liang telah
dibolehjaringkan dengan liang-liang yang berdekatan. Sebagai tambahan, terdapat
kolerasi yang baik antara jangkaan kebolehjaringan liang dan keliangan.
Keputusan ini memberi indikasi bahawa ia merupakan teknik yang mudah dalam
memberikan gambaran awal tentang morfologi dalaman struktur bahan perancah 3-D.
Kata kunci: Kebolehjaringan liang; pengotoran
warna; PHBV; PHB;
Struktur 3-D
RUJUKAN
Cheng, S., Chen, G.Q., Leski, M., Zou, B., Wang, Y. &
Wu, Q. 2006. The effect of d,l-β-hydroxybutyric acid on cell death and
proliferation in L929 cells. Biomaterials 27(20): 3758-3765.
Chung, C.W., Kim, H.W., Kim, Y.B. & Rhee, Y.H. 2003.
Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced
blood compatibility. International Journal of Biological Macromolecules 32(1-2):
17-22.
Freeman, M. 2005. The Digital SLR Handbook. Lewes: ILEX.
Gassner, F. & Owen, A.J. 1996. Some properties of
poly(3- hydroxybutyrate)-poly(3-hydroxyvalerate) blends. Polymer
International 39(3): 215-219.
Hazaree, C., Wang, K., Ceylan, H. & Gopalakrishnan, K.
2011. Capillary transport in RCC: water-to-cement ratio, strength, and
freeze-thaw resistance. J. Mater. Civ. Eng. 23(8): 1181- 1191.
Lu, J.X., Flautre, B., Anselme, K., Hardouin, P., Gallur,
A., Descamps, M. & Thierry, B. 1999. Role of interconnections in porous
bioceramics on bone recolonization in vitro and in vivo. Journal
of Materials Science: Materials in Medicine 10(2): 111-120.
Lianlai, Z., Xianmo, D., Shujie, Z. & Zhitang, H. 1997.
Biodegradable polymer blends of poly(3-hydroxybutyrate) and
poly(-D,L-lactide)-co-poly(ethylene glycol). Journal of Applied Polymer
Science 65(10): 1849-1856.
Pouton, C.W. & Akhtar, S. 1996. Biosynthetic
polyhydroxyalkanoates and their potential in drug delivery. Advanced Drug
Delivery Reviews 18(2): 133-162.
Qu, X.H., Wu, Q., Liang, J., Zou, B. & Chen, G.Q. 2006.
Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-
3-hydroxyhexanoate) on in vitro growth and differentiation of smooth
muscle cells. Biomaterials 27(15): 2944-2950.
Shi, H.L., Joost, R.D., Wijn, P.L. & Klaas, D.G. 2002.
Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. Journal
of Biomedical Materials Research 61(1): 109-120.
Siracusa, V., Rocculi, P., Romani, S. & Rosa, M.D. 2008.
Biodegradable polymers for food packaging: A review. Trends in Food Science
& Technology 19(12): 634-643.
Tabesh, H., Amoabediny, G., Nik, N.S., Heydari, M.,
Yosefifard, M., Siadat, S.O.R. & Mottaghy, K. 2009. The role of
biodegradable engineered scaffolds seeded with Schwann cells for spinal cord
regeneration. Neurochemistry International 54(2): 73-83.
Williams, S.F., Martin, D.P., Horowitz, D.M. & Peoples,
O.P. 1999. PHA applications: addressing the price performance issue: I. Tissue
engineering. International Journal of Biological Macromolecules 25(1-3):
111-121.
*Pengarang
untuk surat-menyurat; email: a.mantalaris@imperial.ac.uk
|