Sains Malaysiana 45(4)(2016): 653–658
Influence of Sintering
Parameters on the Compressive Yield Strength of Stainless Steel
Foams Produced by the Space Holder Method
(Pengaruh Parameter
Pensinteran terhadap Kekuatan Alah Mampatan Keluli Tahan Karat Berbusa
yang Dihasilkan melalui Kaedah Pengisi Pemegang Ruang)
TAN KOON
TATT1,2,
NORHAMIDI
MUHAMAD1*,
ANDANASTUTI
MUCHTAR1,
ABU
BAKAR
SULONG1
& NEO MING CHERNG1
1Department of Mechanical
and Material Engineering, Faculty of Engineering and Built Environment
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Faculty of Pharmacy,
MAHSA University, Pusat Bandar Damansara, Damansara Heights
50490
Kuala Lumpur, Malaysia
Diserahkan:
19 Mac 2015/Diterima: 3 November 2015
ABSTRACT
Metallic foams are a
new class of materials that have a great potential to be used in
various functional and structural applications. Due to their competitive
price compared to aluminium, metallic foams are anticipated to become
an alternative material for light-weight structures. In this study,
stainless steel foams are fabricated using a powder space holder
method. The materials used include stainless steel powder, a novel
space holder glycine and binders consisting of palm stearin and
of polyethylene (PE). The stainless steel foams
are sintered at 1100oC, 1200oC
and 1300oC with sintering times of 1, 2 and 3 h, respectively,
to investigate the effects of the sintering parameters on the compressive
yield strength of the stainless steel foams. The results showed
that all of the stainless steel foams produced exhibit the general
behaviours of metal foams. The sintering time is the most significant
parameter that influences the compressive yield strength of stainless
steel foams. Increasing the sintering temperature and sintering
time will increase the compressive yield strength. The interaction
between the sintering temperature and sintering time is found to
be not statistically significant.
Keywords: ANOVA;
compressive strength; metal foams; space holder
ABSTRAK
Logam berbusa merupakan
kelas bahan terbaru yang mempunyai potensi yang besar untuk digunakan
dalam pelbagai aplikasi fungsi dan struktur. Disebabkan harganya
yang kompetitif berbanding dengan aluminium, logam berbusa dijangka
menjadi bahan alternatif untuk struktur berat-ringan. Dalam kajian
ini, keluli tahan karat berbusa difabrikasi menerusi kaedah pemegang
pengisi ruang. Bahan yang digunakan termasuklah serbuk keluli tahan
karat, pemegang pengisi ruang terbaru, glisina dan bahan pengikat
yang terdiri daripada stearin sawit dan polietilena (PE). Keluli tahan karat berbusa disinter pada suhu 1100oC,
1200oC dan 1300oC
dengan masa pensinteran masing-masing 1, 2 dan 3 jam untuk mengkaji
kesan parameter pensinteran terhadap kekuatan mampatan keluli tahan
karat berbusa. Keputusan kajian menunjukkan bahawa semua keluli
tahan karat berbusa yang dihasilkan menunjukkan perilaku umum logam
berbusa. Masa pensinteran merupakan parameter yang paling signifikan
mempengaruhi kekuatan mampatan keluli tahan karat berbusa. Peningkatan
suhu dan masa pensinteran akan meningkatkan kekuatan mampatan. Interaksi
antara suhu pensinteran dan masa pensinteran didapati tidak ketara.
Kata kunci: ANOVA; busa logam; kekuatan
mampatan; pemegang pengisi
RUJUKAN
Abdel, G.N.A.,
El-Shenawy, A.E. & Hussien, W.A.M. 2011. The inhibitive effect
of some amino acids on the corrosion behaviour of 316 L stainless
steel in sulfuric acid solution. Modern Applied Science 5(4):
19-29.
Ahmad, S.,
Muhamad, N., Muchtar, A., Sahari, J., Jamaludin, K.R., Ibrahim,
M.H.I., Mohamad Nor, N.H. & Murtadhahadi. 2010. Pencirian titanium
berbusa yang dihasilkan pada suhu pensinteran yang berbeza menggunakan
kaedah buburan. Sains Malaysiana 39(1): 77-82.
Alizadeh,
M. & Mirzaei-Aliabadi, M. 2012. Compressive properties and energy
absorption behavior of Al-Al2O3 composite foam synthesized by space-holder
technique. Materials and Design 35: 419-424.
Ashby, M.F.,
Evans, A., Fleck, N.A., Gibson, L.J., Hutchison, J.W. & Wadley,
H.N.G. 2000. Metal Foams-Design Guide. US: Butterworth- Heinemann.
Bekoz, N. & Oktay,
E. 2013. Effect of heat treatment on mechanical properties of low
alloy steel foams. Materials and Design 51: 212-218.
Dewidar, M. 2012. Influence
of processing parameters and sintering atmosphere on the mechanical
properties and microstructure of porous 316 L stainless steel for
possible hard-tissue applications. International Journal of Mechanical
& Mechatronics Engineering 12(1): 10-24.
Dewidar, M., Khalil,
K.A. & Lim, J.K. 2007. Processing and mechanical properties
of porous 316 L stainless steel for biomedical applications. Trans.
Nonferrous Met. Soc. China 17: 468-473.
Esen, Z. & Bor, S.
2007. Processing of titanium foams using magnesium spacer particles.
Scripta Materialia 56: 341-344.
German, R.M. 1996. Sintering
Theory and Practice. New York: Wiley.
Gibson, L.J. & Ashby,
M.F. 1997. Cellular Solids: Structure and Properties [M].
Cambridge: Cambridge University Press.
Jha, N., Mondal, D.P.,
Majumdar, J.D., Badkul, A., Jha, A.K. & Khare, A.K. 2013. Highly
porous open cell Ti-foam using NaCl as temporary space holder through
powder metallurgy route. Materials and Design 47: 810-819.
Jiang, B., Zhao, N.Q.,
Shi, C.S., Du, X.W., Li, J.J. & Man, H.C. 2005. A novel method
for making open cell aluminium foams by powder sintering process.
Materials Letters 59: 3333-3336.
Kotan, G. & Bor,
A.S. 2007. Production and characterization of high porosity Ti-6Al-4V
foam by space holder technique in powder metallurgy. Turkish
J. Eng. Env. Sci. 31: 149-156.
Mutlu, I. & Oktay,
E. 2013. Mechanical properties of sinter-hardened Cr–Si–Ni–Mo based
steel foam. Materials and Design 44: 274-282.
Salahinejad, E., Amini,
R., Marasi, M. & Jafar, H.M. 2010. The effect of sintering time
on the densification and mechanical properties of a mechanically
alloyed Cr–Mn–N stainless steel. Materials and Design 31:
527-532.
Schüler, P., Fischer,
S.F., Bührig-Polaczek, A. & Fleck. C. 2013. Deformation and
failure behaviour of open cell Al foams under quasistatic and impact
loading. Materials Science & Engineering A 587: 250-261.
Surace, R., De Filippis,
L.A.C., Ludovico, A.D. & Boghetich, G. 2009. Influence of processing
parameters on aluminium foam produced by space holder technique.
Materials and Design 30: 1878-1885.
Wen, C.E., Mabuchi, M.,
Yamada, Y., Shimojima, K., Chino, Y. & Asahina. 2001. Processing
of biocompatible porous Ti and Mg. Scripta Materialia 45:
1147-1153.
Yoon, T.S., Lee, Y.H.,
Ahn, S.H., Lee, J.H. & Lee, C.S. 2003. Effects of sintering
conditions on the mechanical properties of metal injection molded
316 L stainless steel. ISIJ Int. 43: 119-126.
*Pengarang
untuk surat-menyurat; email: norhamidi@ukm.edu.my
|