Sains Malaysiana 45(8)(2016): 1201–1206
Synthesis
of Zinc Selenide/Graphene Oxide Composite via Direct and Indirect Hydrothermal
Method
(Sintesis
Komposit Zink Selenida/Grafin Oksida melalui Kaedah Hidroterma Langsung dan
tidak lLangsung)
LEE HAN KEE1, JOSEPHINE LIEW YING CHYI1*, ZAINAL ABIDIN TALIB1, MOHAMMAD SHUHAZLLY MAMAT1, JANET LIM HONG NGEE2, FAKHRURRAZI ASHARI1, LEONG YONG JIAN1, CHANG FU DEE3 & BURHANUDDIN YEOP MAJLIS3
1Department of
Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
2Department of
Chemistry Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
3Institute
Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 20 April 2015/Diterima: 20 November 2015
ABSTRACT
Zinc selenide/graphene oxide (ZnSe/GO) composite is synthesized
using hydrothermal method. Two different methods such as direct and indirect
route have been investigated to form the ZnSe/GO composite. In this research,
the graphene oxide used was in sheet and liquid form. The synthesized composite
was then characterized using X-ray diffraction (XRD)
for phase identification, field emission scanning electron microscopy (FESEM)
for morphology analysis and ultraviolet-visible spectroscopy (UV-Vis)
for optical properties. ZnSe/GO composite showed absorption peak ranging from
460 to 480 nm with the optical band gap obtained through Tauc equation. The
optical band gap of the ZnSe/GO composite has been tuned down to a smaller
value as compared to the bulk ZnSe compound. The optical band gap has been
reduced to around 2.53 eV when liquid graphene oxide was used while around 2.23
to 2.32 eV when graphene oxide sheet was used. The purity of ZnSe/GO composite
synthesis via indirect hydrothermal method is higher than those synthesized via
direct hydrothermal method. The type of graphene oxide will affect the
morphology of the composite where the ZnSe compound was either wrapped by tiny
thorn-like substance or graphene oxide layer.
Keywords: Band gap tuning; morphology; UV-vis spectroscopy; x-ray
diffraction
ABSTRAK
Komposit zink selenida/grafin oksida (ZnSe/GO)
telah dihasilkan menggunakan kaedah hidroterma. Dua kaedah berlainan iaitu
secara langsung dan tidak langsung telah dikaji untuk menghasilkan
komposit ZnSe/GO. Dalam kajian ini, grafin
oksida yang digunakan adalah dalam bentuk lembaran dan cecair.
Komposit yang dihasilkan ini kemudian dicirikan dengan menggunakan
instrumen pembelauan sinar-X (XRD) untuk mengenal pasti fasa sampel, mikroskopi medan
pancaran pengimbasan elektron (FESEM) untuk analisis morfologi
dan spektroskopi ultraungu/boleh nampak (UV-Vis) untuk mengenal pasti sifat
optiknya. Komposit ZnSe/GO menunjukkan puncak penyerapan dalam lingkungan
460 hingga 480 nm dengan jurang jalur optik diperoleh melalui persamaan
Tauc. Jurang jalur optik ZnSe/GO komposit telah dikurangkan ke nilai yang
lebih kecil berbanding dengan sebatian ZnSe. Jurang jalur optik telah dikurangkan ke 2.53 eV apabila
cecair grafin oksida digunakan manakala antara 2.23 hingga 2.32
eV apabila lembaran grafin oksida digunakan. Ketulenan komposit ZnSe/GO yang dihasilkan melalui kaedah hidroterma
secara tidak langsung adalah lebih tinggi berbanding dengan komposit
yang dihasilkan melalui kaedah hidroterma secara langsung.
Jenis grafin oksida akan memberi kesan
terhadap morfologi komposit dengan sebatian ZnSe sama ada dibalut
oleh bahan duri kecil atau lapisan grafin oksida.
Kata kunci: Morfologi; pembelauan sinar-X; penalaan jurang jalur;
spektroskopi UV-Vis
RUJUKAN
Askeland, D., Fulay, P. & Wright, W. 2011. The
Science and Engineering of Materials. 6th ed. Stamford: CT.
Bhaskar, S., Dobal, P.S., Rai, B.K., Katiyar, R.S., Bist,
H.D., Ndap, J.O. & Burger, A. 1999. Photoluminiscence
study of deep levels in Cr-doped ZnSe. Journal of Applied Physics 85(1):
439-443.
Han, J., Xue, S., Zhou, W., Wu, S., Xie, P. & Zou, R.
2014. Cactus-like and honeycomb-like Zinc Selenide microspheres
on graphene oxide sheets with excellent optical properties. Journal of
Colloid and Interface Science 430: 116-120.
Kumaresan, R., Ichimura, M. & Arai, E. 2002. Chemial deposition of ZnSe polycrystalline thin films and their
characterization. Thin Solid Films 414: 25-30.
Li, X.S., Zhu, Y.W., Cai, W.W., Borysiak, M., Han, B.Y.,
Chen, D., Piner, R.D., Colombo, L.G. & Ruoff, R.S. 2009. Transfer of large-area graphene films for high-performance transparent
conductive electrodes. Nano Letters 9(12): 4359-4363.
Liu, C., Ji, Y. & Tan, T. 2013. One-pot hydrothermal synthesis of water-dispersible ZnS quantum dots modified
with mercaptoacetic acid. Journal of Alloys and Compounds 570: 23-27.
Lokhande,
C.D., Patil, P.S., Tributsh, H. & Ennaoui, A. 1998. Formation
of II-VI nanocrystals in a novel phosphate glass. Journal of Crystal
Growth 184-185: 365-369.
Muller, M., Brauninger, M. & Trauzettel, B. 2009. Temperature dependence of the conductivity of ballistic graphene. Physical Review Letters 103: 196801-196805.
Patel,
J.D., Mighri, F. & Ajji, A. 2014. A facile route towards
preparation of ZnSe nanocrystals. Materials Letters 131: 366-369.
Segovia, M., Lemus, K., Moreno, M., Santa Ana, M.A.,
Gonzalez, G., Ballesteros, B., Sotomayor, C. & Benaventa, E. 2011. Zinc oxide/carboxylic acid lamellar structures. Materials Research Bulletin 46(11):
2191-2195.
Syuhada,
N.I., Huang, N.M., Vijay Kumar, S., Lim, H.N., Rahman, S.A., Thien, G.S.H.,
Ibrahim, N.A., Ahmad, M. & Moradihamedani, P. 2014. Enhanced mechanical
properties of chitosan/EDTA-GO nanocomposites thin films. Sains Malaysiana 43(6):
851-859.
Wu,
C.X., Li, F.S., Zhang, Y.G. & Guo, T.L. 2012. Improving the field emission
of graphene by depositing zinc oxide nanorods on its surface. Carbon 50:
3622-3626.
Zhu,
J., Koltypin, Y. & Gedankem, A. 2000. General sonochemical method for the
preparation of nanophasic selenides: Synthesis of ZnSe nanoparticles. Chemistry
of Materials 12(1): 73-78.
*Pengarang
untuk surat-menyurat; email: josephine@upm.edu.my
|