Sains Malaysiana 45(8)(2016): 1227–1234
Natural
Dye Sensitizer in Dye Sensitized Solar Cell
(Pemeka
Pewarna Semula Jadi dalam Pekaan Pewarna Sel Suria)
NURAIN NAJIHAH
ALIAS*
& KHATIJAH AISHA YAACOB
School of Materials & Mineral
Resources Engineering (SMMRE), Engineering Campus, Universiti Sains
Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Diserahkan: 20 April 2015/Diterima:
25 November 2015
ABSTRACT
Blue-pea flower, turmeric,
mulberries, brown rice, purple cabbage and Indian mulberry leave
were successfully form on TiO2 mesoporous
film using immersion method to produce TiO2 mesoporous
photoanode for natural dye sensitized solar cells (DSSCs)
assembly. The TiO2 mesoporous
films were formed after calcinations at 450˚C for 30 min. The
photoanodes were dipped in different types of natural dye for 24,
72 and 120 h. The properties of natural dye were investigated by
ultraviolet-visible spectroscopy (UV-vis)
and Fourier transform infrared spectroscopy (FTIR).
From UV-Vis spectroscopy analysis, the wavelength range of the
natural dye studied in this research lays between 350 and 800 nm.
The FTIR
result of the natural dye shows the present of intermolecular
H-bond, C=O stretching vibration, C-O-C stretching vibration, C=C
bending and C-H bending which was due to the component of anthocyanin,
carotenoids and chlorophyll. The characterization including field
emission scanning electron microscopy (FESEM), energy dispersive x-ray (EDX)
and x-ray diffraction (XRD) were carried out on the TiO2
mesoporous film. On the other hand, the conductivity
of electrolyte for liquid electrolyte, gel electrolyte and solid
electrolyte were also investigated. Gel electrolyte has the highest
conductivity, 26.1 mS/cm while liquid electrolyte and solid electrolyte
obtained 17.34 and 0.45 mS/cm, respectively. Finally, solar cells
were prepared by sandwiching the TiO2 mesoporous
photoanode with Platinum (Pt) counter electrode. The results showed
short circuit current, open circuit current voltage, fill factor
and efficiency for all samples during the present of light. The
highest efficiency was obtained from Blue-pea sample that immersed
for 120 h with 0.123% efficiency.
Keywords: DSSCs;
natural dye sensitized solar cells; solar energy
ABSTRAK
Bunga telang, kunyit, malberi,
beras perang, kubis ungu dan daun mengkudu telah melekat pada lapisan
TiO2 berliang meso dengan menggunakan
kaedah rendaman bagi menghasilkan TiO2 berliang
meso sebagai fotoanod untuk pewarna semula jadi sebagai pemeka dalam
pewarna sel solar berkepekaan (DSSCs). Lapisan TiO2 berliang
meso terbentuk selepas pengkalsinan pada suhu 450˚C selama
30 min. Fotoanod dicelup dalam pewarna semula jadi selama 24, 72
dan 120 jam. Sifat pewarna semula jadi telah dicirikan oleh Ultra
Violet Visible Spektrofotometer (UV-vis)
dan spektroskopi Fourier infra merah (FTIR). Melalui UV-Vis
spektroskopi, gelombang pewarna semula jadi yang diperoleh adalah
antara 350 dan 800 nm. Hasil FTIR pewarna semula jadi menunjukkan
terdapat ikatan H, C=O, C-O-C, C=C dan C-H yang disebabkan oleh
komponen daripada pada antosianin, karotenoid dan klorofil. Medan
pancaran mikroskop elektron imbasan (FESEM), tenaga serakan sinar-x (EDX)
dan pembelauan sinar-x (XRD) telah dijalankan ke atas lapisan
TiO2 berliang meso. Konduktiviti elektrolit cecair, elektrolit
gel dan elektrolit pepejal juga telah dikaji. Elektrolit gel mencatat
konduktiviti tertinggi, 26.1 mS/cm manakala elektrolit cecair dan
elektrolit pepejal memperoleh 17.34 dan 0.45 mS/cm. Fotoanod TiO2 berliang
meso dicantum dengan elektrod kaunter Platinum (Pt). Nilai yang
ditunjukkan adalah semasa litar pintas, voltan litar terbuka, faktor
pengisian dan peratus keberkesanan untuk semua sampel. Bunga telang
yang telah direndam selama 120 jam telah mencatat peratus keberkesanan
yang tertinggi iaitu 0.123%.
Kata kunci: DSSCs; pewarna semula
jadi sel solar berkepekaan; tenaga solar
RUJUKAN
Cameron, P.J. & Peter, L.M.
2003. Characterization of titanium dioxide blocking layers in dye-sensitized
nanocrystalline solar cells. Physic Chemistry 107(51): 14394-14400.
Grätzel, M. 2013. Dye-sensitized
solar cells. Journal of Photochemistry and Photobiology C: Photochemistry
Reviews 4(2): 145-153.
Haque, S.A., Palomares, E., Cho,
B.M., Green, A.N., Hirata, N., Klug, D.R. & Durrant, J.R. 2004.
Charge separation versus recombination in dye-sensitized nanocrystalline
solar cells: the minimization of kinetic redundancy. J. Am. Chem.
Soc. 127(10): 3456-3462.
Hara, K., Sayama, K., Ohga, Y.,
Shinpo, A., Sugab, S. & Arakawa, H. 2001. A coumarin-derivative
dye sensitized nanocrystalline TiO2 solar cell having
a high solar-energy conversion efficiency up to 5.6%. Chemical
Communications 2001: 569-570.
Indriana Kartini, Menzies, D., Blake,
D., da Costa, J.C.D., Meredith, P., Riches J.D. & Lu, G.Q. 2001.
Hydrothermal seeded synthesis of mesoporous titania for application
in dye-sensitised solar cells (DSSCs). Journal of Materials Chemistry
14: 2917-2921.
Kim, M-R., Park, S-H., Kim, J-U.
& Lee, J-K. 2011. Dye-sensitized solar cells based on polymer
electrolytes. In Solar Cells - Dye-Sensitized Devices, edited
by Kosyachenko, L.A. Croatia: InTech. pp. 223-244.
Kubo, W., Murakoshi, K., Kitamura,
T., Yoshida, S., Haruki, M., Hanabusa, K., Shirai, H., Wada, Y.
& Yanagida, S. 2001. Quasi-solid-state dye-sensitized TiO2
solar cells: Effective charge transport in Mesoporous space filled
with gel electrolytes containing iodide and iodine. The Journal
of Physical Chemistry B 105(51): 12809-12815.
Nakade, S., Kanzaki, T., Kubo, W.,
Kitamura, T., Wada, Y. & Yanagida, S. 2004. Role of electrolytes
on charge recombination in dye-sensitized TiO2 solar
cell (1): The case of solar cells using the I-/I3- Redox Couple.
The Journal of Physical Chemistry B 109(8): 3480-3487.
Riyaz Ahmad Mohamed Ali & Nafarizal
Nayan 2010. Fabrication and analysis of dye-sensitized solar cell
using natural dye extracted from dragon fruit. International
Journal of Integrated Engineering 2(12): 29-35.
Sayamaa, K., Tsukagoshi., S., Mori,
T., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S. & Arakawaa,
H. 2003. Efficient sensitization of nanocrystalline TiO2
films with cyanine and merocyanine organic dyes. Solar Energy
Materials & Solar Cells 80(1): 47-71.
Shao-Lu Li, Ke-Jian Jiang, Ke-Feng
Shao & Lian-Ming Yang 2006. Novel organic dyes for efficient
dye-sensitized solar cells. Chemical
Communications (Urgent High Quality Communications From Across
the Chemical Sciences) 2006: 2792-2794.
Tokuhisa, H. & Hammond, P.T.
2003. Solid state photovoltaic thin film using TiO2 organic
dyes and layer by layer polyelectrolyte nanocomposite. Advanced
Functional Material 13(11): 831-839.
Wu, J., Lan, Z., Wang, D., Hao,
S., Lin, J., Huang, Y., Yin, S. & Sato, T. 2006. Gel polymer
electrolyte based on poly(acrylonitrile-co-styrene) and a novel
organic iodide salt for quasi-solid state dye-sensitized solar cell.
Electrochimica 51(20): 4243-4249.
Zhu, K., Kopidakis, N., Neale, N.R.,
van de Lagemaat, J. & Frank, A.J. 2006. Influence of surface
area on charge transport and recombination in dye-sensitized TiO2
solar cells. Physical Chemistry 110(50): 25174-25180.
*Pengarang untuk surat-menyurat;
email: ainalias@yahoo.com
|