Sains Malaysiana 45(8)(2016):
1243–1252
Fabrikasi GPS Antena menggunakan Bahan
Zink Aluminat Berstruktur Nano didopkan dengan Kobalt
(Fabrication of GPS
Antenna using Zinc Aluminate (ZnAl2O4) Nanostructured Material Doped with Cobalt)
WAN NASARUDIN
WAN
JALAL1,2,
HUDA
ABDULLAH1*,
MOHD
SYAFIQ
ZULFAKAR1
& BADARIAH BAIS1
1Department of Electrical, Electronic
and System Engineering, Faculty of Engineering and Built Environment,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan,
Malaysia
2National Dual Training System (NDTS),
Department of Skills Development, Level 7 - 8, Block D4, Complexs
D, Federal Government Administrative Centre, 62530 Putrajaya, Federal
Territory,
Malaysia
Diserahkan:
20 April 2015/Diterima: 12 Ogos 2015
ABSTRAK
Kaedah sol gel digunakan untuk
menghasilkan filem nipis CoxZn(1-x)Al2O4 berstruktur
nano pada suhu 600°C. Corak pembelauan XRD menunjukkan pembentukan struktur
tunggal spinel ZnAl2O4 dan
CoAl2O4. Saiz hablur dan ketumpatan
bahan berkurangan apabila kepekatan bahan dopan Co bertambah, iaitu
masing-masing daripada 19.52 kepada 10.39 nm dan 4.609 kepada 4.585
g/cm3.
Parameter kekisi pula meningkat daripada 8.085 kepada 8.098 Å apabila
Co meningkat. Analisis FTIR menunjukkan ikatan ZnO, Co dan Al-O
berlaku antara 487 hingga 550 cm-1,
manakala ikatan spinel bagi ZnAl2O4 dan
CoAl2O4 pula
terbentuk pada 655 cm-1. Imej AFM menunjukkan
kekasaran permukaan menurun apabila Co bertambah iaitu daripada
30.21 nm (×=0.00) kepada 14.83 nm (×=0.30). Nilai
pemalar dielektrik (εr)
menunjukkan penurunan secara linear apabila Co meningkat iaitu daripada
8.53 kepada 7.31. Seterusnya,
GPS antena
difabrikasi menggunakan sampel CoxZn(1-x)Al2O4.
Prestasi dan frekuensi operasi GPS antena diukur menggunakan
penganalisis rangkaian siri PNA pada frekuensi kenaan 1-2
GHz. Analisis mendapati antena beroperasi pada frekuensi 1.570 Ghz
dengan kerungian pulangan -15.6 hingga -21.2 dB dan lebar jalurnya
pula adalah 80 hingga 315 MHz. Kesemua antena yang telah difabrikasi
memenuhi keperluan minimum antena untuk beroperasi pada aplikasi
GPS.
Kata kunci: Antena GPS;
Co/ZnAl2O4, FTIR;
pemalar dielektrik; struktur nano
ABSTRACT
The CoxZn(1-x)Al2O4 thin
films was synthesized by the sol-gel method at 600°C.
The XRD patterns displayed the characteristic peaks of the solid
spinel structure and were observed as ZnAl2O4 or
CoAl2O4 system.
The addition of Co decreased the crystallite size and ceramic density
from 19.52 to 10.39 nm and 4.609 to 4.585 g/cm3,
respectively. The lattice parameter increase initially from 8.085
to 8.098 Å, as Co increased. The FTIR analysis showed that the formation
of ZnO, Co and Al-O occurred at 487 and 550 cm−1,
while ZnAl2O4 and
CoAl2O4 spinel
bonds occurred at 655 cm−1. The AFM images
showed the surface roughness decreased as Co increased, from 30.21
nm (×=0.00) to 14.83 nm (×=0.30). As the Co content
increased, the dielectric constant (εr) values decreased linearly from
8.53 to 7.31. Finally, GPS patch antennae were successfully
fabricated using the CoxZn(1-x)Al2O4 material.
The performance and operating frequencies of GPS patch
antennas were determined from frequencies of 1-2 GHz using PNA series
network analyzer. The results showed that the patch antenna resonates
at frequency of 1.570 GHz and produces a return loss bandwidth between
-15.6 and -21.2 dB, while their bandwidth between 80 to 315 MHz
to ensure full functionality. The all fabricated antennas meet the
minimum requirements of GPS
applications.
Keywords: Co/ZnAl2O4; dielectric constant; FTIR;
GPS antennas; nanostructures
RUJUKAN
Abdelaziz,
A.A. & Nashaat, D.M. 2007. Compact GPS microstrip patch antenna.
MILCOM, Orlando, Florida, 29-31 October.
Abdullah,
H., Jalal, W., Zulfakar, M., Islam, M., Bais, B. & Shaari, S.
2015. Characterization of TixZn(1-X)Al2O4 thin
films by sol-gel method for GPS patch antennae. Journal of the
Korean Physical Society 66(1): 41-45.
Abdullah,
H., Jalal, W. & Zulfakar, M. 2014. Miniaturization of GPS patch
antennas based on novel dielectric ceramics Zn(1−X)MgxAl2O4 by
sol-gel method. Journal of Sol-Gel Science and Technology 69(2):
429-440.
Abdullah,
H., Zulfakar, M.S., Jalal, W.N.W., Islam, M.T. & Shaari, S.
2014. Synthesis and fabrication of (1X) ZnAl2O4–
Xsio2 thin films to be applied as patch antennas. Journal
of Sol-Gel Science and Technology 69(1): 183-192.
Balanis,
C.A. 2005. Antenna Theory Analysis and Design. 3rd. ed. Hoboken,
New Jersey: John Wiley & Sons, Inc.
Beier, M.J., Hansen, T.W. & Grunwaldt, J.D. 2009. Selective liquid-phase oxidation of alcohols
catalyzed by a silver-based catalyst promoted by the presence of
Ceria. Journal of Catalysis 266(2): 320-330.
Bian, J., Wang, L. & Yuan, L. 2009. Microwave dielectric
properties of Li2+Xti1−4xnb3xo3
(0 ≤ X ≤ 0.1). Materials Science and Engineering:
B 164(2): 96-100.
Bian, J.J., Yan,
K. & Dong, Y.F. 2008. Microwave dielectric properties of A1−3x/2lax(Mg1/2w1/2)O3
(a = Ba, Sr, Ca; 0.0 ≤ X ≤ 0.05) double Perovskites.
Materials Science and Engineering: B 147(1): 27-34.
Breed, G. 2009.
The fundamentals of patch antenna design and performance. High
Frequency Electronics 8(3): 48-52.
Chandradass, J.
& Balasubramanian, M. 2005. Sol-gel processing of alumina-zirconia
minispheres. Ceramics International 31(5): 743-748.
Chen, Y.C. 2011.
Microwave dielectric properties of (Mg(1-X) Cox)2sn04
ceramics for application in dual-band inverted-E-shaped monopole
antenna. IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control 58(12): 2531-2538.
Chen, Z., Shi,
E., Li, W., Zheng, Y. & Zhong, W. 2002. Hydrothermal synthesis
and optical property of nano-sized coal 2O4 pigment. Materials
Letters 55(5): 281-284.
Chroma, M., Pinkas,
J., Pakutinskiene, I., Beganskiene, A. & Kareiva, A. 2005. Processing
and characterization of sol-gel fabricated mixed metal aluminates.
Ceramics International 31(8): 1123-1130.
de Souza, L.K.C.,
Zamian, J.R., da Rocha Filho, G.N., Soledade, L.E.B., Dos Santos,
I.M.G., Souza, A.G., Scheller, T., Angélica, R.S. & Da Costa,
C.E.F. 2009. Blue pigments based on CoxZn(1−X)Al2O4 spinels
synthesized by the polymeric precursor method. Dyes and Pigments
81(3): 187-192.
Dhak, D. &
Pramanik, P. 2006. Particle size comparison of soft-chemically prepared
transition metal (Co, Ni, Cu, Zn) aluminate spinels. Journal
of the American Ceramic Society 89(3): 1014-1021.
El All, S.A., Fawzy,
Y. & Radwan, R. 2007. Study on the structure and electrical
behaviour of zinc aluminate ceramics irradiated with gamma radiation.
Journal of Physics D: Applied Physics 40(18): 5707.
Huang, C.L., Chen,
J.Y. & Tseng, Y.W. 2010. High-dielectric-constant and low-loss
microwave dielectric in the Ca(Mg1/3ta2/3 )O3–(Ca0.8sr0.2)TiO3
solid solution system. Materials Science and Engineering B 167:
142-146.
Huang, C.L., Tseng,
C.F., Yang, W.R. & Yang, T.J. 2008. High dielectric constant
and low loss microwave dielectric in the (1−X) Nd (Zn1/2ti1/2)
O3–XsrtiO3 system
with a zero temperature coefficient of resonant frequency. Journal
of the American Ceramic Society 91(7): 2201-2204.
Huang, C.L., Yang,
T.J. & Huang, C.C. 2009. Low dielectric loss ceramics in the
Znal2O4–TiO2 system
as a Τf compensator. Journal of the American Ceramic Society
92(1): 119-124.
Ianoş, R.,
Lazău, R., Lazău, I. & Păcurariu, C. 2012. Chemical
oxidation of residual carbon from ZnAl2O4 powders
prepared by combustion synthesis. Journal of the European Ceramic
Society 32(8): 1605-1611.
Iqbal, M. J., Ismail,
B., Rentenberger, C. & Ipser, H. 2011. Modification of the Physical
Properties of Semiconducting MgAl2O4 by
Doping with a Binary Mixture of Co and Zn Ions. Materials Research
Bulletin 46(12): 2271-2277.
Ivill, M., Pearton,
S., Rawal, S., Leu, L., Sadik, P., Das, R., Hebard, A., Chisholm,
M., Budai, J. D. & Norton, D.P. 2008. Structure and magnetism
of cobalt-doped Zno thin films. New Journal of Physics 10(6):
065002.
Jalal, W., Abdullah,
H., Zulfakar, M., Islam, M., Shaari, S. & Bais, B. 2015. Synthesis
and fabrication of GPS patch antennas by using Zn(1−x)Ti
X Al2O4 thin
films. Journal of Sol-Gel Science and Technology 74(2): 566-574.
Jalal, W., Abdullah,
H., Zulfakar, M., Islam, M., Bais, B. & Shaari, S. 2014a. GPS
patch antenna performance by modification of Zn(1−X)CaxAl2O4-based
microwave dielectric ceramics. Journal of Sol-Gel Science and
Technology 71(3): 477-489.
Jalal, W.N.W.,
Abdullah, H., Zulfakar, M.S., Shaari, S., Islam, M. & Bais,
B. 2014b. Characteristics of nanostructured CaxZn(1-X) Al2O4 thin
films prepared by sol-gel method for GPS patch antennas. Sains
Malaysiana 43(6): 833-842.
Jamal, E., Kumar,
D. & Anantharaman, M.R. 2011. On structural, optical and dielectric
properties of zinc aluminate nanoparticles. Bulletin of Materials
Science 34(2): 251-259.
James, J.R. &
Hall, P.S. 1989. Handbook of Microstrip Antennas. London:
P. Peregrinus.
Koops, C.G. 1951.
On the dispersion of resistivity and dielectric constant of some
semiconductors at audiofrequencies. Physical Review 83(1):
121-124.
Kumar, R.T., Selvam,
N.C.S., Ragupathi, C., Kennedy, L.J. & Vijaya, J.J. 2012. Synthesis,
characterization and performance of porous Sr(Ii)-added Znal2o4
nanomaterials for optical and catalytic applications. Powder
Technology 224: 147-154.
Kurajica, S., Tkalčec,
E., Gržeta, B., Iveković, D., Mandić, V., Popović,
J. & Kranzelić, D. 2011. Evolution of structural and optical
properties in the course of thermal evolution of sol-gel derived
cobalt-doped Gahnite. Journal of Alloys and Compounds 509(7):
3223-3228.
Lei, W., Lu, W.Z.,
Liu, D. & Zhu, J.H. 2009. Phase evolution and microwave dielectric
properties of (1−X)ZnAl2O4−Xmg2TiO4 ceramics.
Journal of the American Ceramic Society 92(1): 105-109.
Lei, W., Lu, W.Z.,
Wang, X.H., Liang, F. & Wang, J. 2011. Phase composition and
microwave dielectric properties of ZnAl2O4- CO2TiO4 low-permittivity
ceramics with high quality factor. Journal of the American Ceramic
Society 94(1): 20-23.
Li, R., Pan, B.,
Laskar, J. & Tentzeris, M.M. 2007. A compact broadband planar
antenna for GPS, Dcs-1800, Imt-2000, and Wlan applications. IEEE
Antennas and Wireless Propagation Letters 6: 25-27.
Lo, Y.T. &
Lee, S.W. 1993. Antenna Handbook: Applications. New York:
Chapman & Hall.
Park, J.H., Nahm,
S. & Park, J.G. 2012. Crystal
structure and microwave dielectric properties of (1-X) Znta2O6-XtiO2
Ceramics. Journal of Alloys and Compounds 537: 221-226.
Peng, Z., Fu, X.,
Ge, H., Fu, Z., Wang, C., Qi, L. & Miao, H. 2011. Effect of
Pr 3+ doping on magnetic and dielectric properties of
Ni-Zn ferrites by ‘one-step synthesis’. Journal of Magnetism
and Magnetic Materials 323(20): 2513-2518.
Sankaralingam,
S. & Gupta, B. 2010. Development
of textile antennas for body wearable applications and investigations
on their performance under Bent conditions. Progress In Electromagnetics
Research B 22: 53-71.
Sotoudeh, H.H.,
Joseph, C., Sooseok, O., Ju-Ung, J., Noh- Joon, P. & Dae-Hee,
P. 2009. Design of a high performance patch antenna for GPS communication
systems. Journal of Electrical Engineering & Technology 4(2):
282-286.
Souza,
L.K.C.D., Zamian, J.R., Filho, G.N.D.R., Soledade, L.E.B., Santos,
I.M.G.D., Souza, A.G., Scheller, T., Lica, R.M.S.A. & Costa,
C.E.F.D. 2009. Blue pigments based on CoxZn1-XAl2O4 spinels
synthesized by the polymeric precursor method. Dyes and Pigments
81: 187-192.
Surendran,
K. P., Santha, N., Mohanan, P. & Sebastian, M. T. 2004. Temperature
Stable Low Loss Ceramic Dielectrics in (1-X)ZnAl2O4-XTiO2 System
for Microwave Substrate Applications. The European Physical Journal
B - Condensed Matter and Complex Systems 41(3): 301-306.
Tareev, B. 1975. Physics of Dielectric
Materials. Moscow: Mir Publication.
Tian, X., Wan, L., Pan, K., Tian,
C., Fu, H. & Shi, K. 2009. Facile synthesis of mesoporous ZnAl2O4
thin films through the evaporation-induced self-assembly method.
Journal of Alloys and Compounds 488(1): 320-324.
Torkian, L., Daghighi, M. &
Boorboor, Z. 2013. Simple and efficient rout for synthesis of spinel
nanopigments. Journal of Chemistry 2013: Article ID: 694531.
Tsai, W.C., Liou, Y.H. & Liou,
Y.C. 2012. Microwave dielectric properties of MgAl2O4-CoAl2O4
spinel compounds prepared by reaction-sintering process. Materials
Science and Engineering: B 177(13): 1133-1137.
Ummartyotin, S., Sangngern, S.,
Kaewvilai, A., Koonsaeng, N., Manuspiya, H. & Laobuthee, A.
2013. Cobalt aluminate (CoAl2O4) derived from
Co-Al-Tea complex and its dielectric behaviors. Journal of Sustainable
Energy & Environment 1(1): 31-37.
Visinescu, D., Paraschiv, C., Ianculescu,
A., Jurca, B., Vasile, B. & Carp, O. 2010. The environmentally
benign synthesis of nanosized CoxZn1-XAl2O4
blue pigments. Dyes and Pigments 87(2): 125-131.
Wagner, K.W. 1913. Zur theorie der
unvollkommenen dielektrika. Annalen der Physik 345(5): 817-855.
Wan Jalal, W.N., Abdullah, H. &
Zulfakar, M.S. 2014. Effect
of Zn site for Ca substitution on optical and microwave dielectric
properties of ZnAl2O4 thin films by sol gel
method. Advances in Materials Science and Engineering 2014:
Article ID: 619024.
Wan Jalal, W.N., Abdullah, H., Zulfakar,
M.S., Shaari, S. & Islam, M.T. 2013. Characterization and dielectric
properties of novel dielectric ceramics CaxZn(1-X)Al2O4
for GPS patch antennas. International Journal of Applied Ceramic
Technology 12(S1): E32-E42.
Wang, X., Lei, W. & Lu, W. 2009.
Novel ZnAl2O4-based microwave dielectric ceramics
with machinable property and its application for GPS antenna. Ferroelectrics
388(1): 80-87.
Wee, F.H., Malek, M.F.B.A., Sreekantan,
S., Al-Amani, A., Ghani, F. & You, K.Y. 2011. Investigation
of the characteristics of barium strontium titanate (Bst) dielectric
resonator ceramic loaded on array antennas. Progress In Electromagnetics
Research 121: 181-213.
Wu, J.M., Lu, W.Z., Lei, W. &
Wang, X.C. 2011. Preparation of ZnAl2O4-based
microwave dielectric ceramics and GPS antenna by aqueous gelcasting.
Materials Research Bulletin 46(9): 1485-1489.
Zawadzki, M., Staszak, W., López
Suárez, F.E., Illán Gómez, M.J. & Bueno López, A. 2009. Preparation,
characterisation and catalytic performance for soot oxidation of
copper-containing ZnAl2O4 spinels. Applied
Catalysis A: General 371(1-2): 92-98.
Zhang, H., Fang, L., Elsebrock,
R. & Yuan, R.Z. 2005. Crystal structure and microwave dielectric
properties of a new A6b5o18-Type cationdDeficient Perovskite Ba3la3ti4nbo18.
Materials Chemistry and Physics 93(2-3): 450-454.
*Pengarang untuk surat-menyurat;
email: huda.abdullah@ukm.edu.my
|