Sains Malaysiana 45(8)(2016): 1265–1273
Pertumbuhan
dan Penambahbaikan Nanokomposit Ag-ZnO untuk Aktiviti Fotomangkin
(Growth
and Improvement of Ag-ZnO Nanocomposites for Photocatalytic Activity)
M.T.M.
AYOB1,
H.M.K.
MOHD1,
I.
ABDUL
RAHMAN1,2,
F.
MOHAMED1,2,
N.M.
HIDZIR1,2
& S. RADIMAN1,2*
1Pusat Pengajian
Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia
43600 Bangi, Selangor Darul Ehsan,
Malaysia
2Pusat Penyelidikan
Teknologi Nuklear, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 20 April 2015/Diterima:
26 November 2015
ABSTRAK
Kami melaporkan hasil kajian
terhadap nanokomposit Ag-ZnO dengan nisbah berat yang berbeza bagi
Ag:ZnO (0:10, 7:10 & 25:10) yang telah disediakan melalui kaedah
sonokimia. Kajian fotomangkin terhadap nanokomposit Ag-ZnO menunjukkan
peningkatan kecekapan fotomangkin terhadap foto-penguraian larutan
akues metilena biru berbanding nanobahan ZnO tulen di bawah penyinaran
cahaya nampak. Sampel Ag-ZnO pada nisbah 7:10 menunjukkan aktiviti
fotomangkin terbaik dan mencapai kadar penguraian sehingga 94% bagi
tempoh masa penguraian selama 80 min, diikuti 86% bagi sampel ZnO
tulen dengan menggunakan kaedah yang sama. Morfologi, struktur bahan,
sifat optik dan kehabluran bagi nanokomposit Ag-ZnO juga dibincangkan
menerusi data yang diperoleh melalui mikroskop elektron transmisi,
spektroskopi ultralembayung-cahaya nampak dan difraktometer analisis
sinar-X. Hasil kajian menunjukkan bahawa dengan penambahan zarah
Ag kepada ZnO telah meningkatkan kadar serapan cahaya bagi ZnO di
kawasan cahaya nampak dan meningkatkan kadar pemisahan cas foto-aruhan
bagi menghasilkan rawatan air tercemar pewarna yang lebih baik.
Kata kunci: Ag-ZnO; foto-penguraian;
metilena biru; rawatan air tercemar
ABSTRACT
We report the research results
of Ag-ZnO nanocomposites with different weight ratio of Ag:ZnO (0:10,
7:10 & 25:10) which were prepared by sonochemical method. The
photocatalytic study of Ag-ZnO nanocomposites showed enhanced photocatalytic
efficiency of methylene blue aqueous solution photodegradation compared
with the pure ZnO nanoparticle under visible light irradiation.
The Ag-ZnO at a ratio of 7:10 displayed the best photocatalytic
activity and reached 94% degradation rate for 80 min degradation
time, followed by 86% for pure ZnO by the same method. The morphological,
structural, optical properties and crystallinity of the Ag-ZnO nanocomposites
were also elucidated with the data obtained from transmission electron
microscopy, ultraviolet-visible spectroscopy and X-ray diffractometer
analyses, respectively. The results showed that by adding particles
of Ag to ZnO increases the absorbance of ZnO in the visible region
and enhances the photoinduced charge separation rate for better
wastewater treatment.
Keywords: Ag-ZnO; methylene blue; photodegradation; wastewater treatment
RUJUKAN
Alammar,
T. & Mudring, A.V. 2009. Facile ultrasound-assisted synthesis
of ZnO nanorods in an ionic liquid. Material Letter 63(9-10):
732-735.
Anandan,
S., Vinu, A., Sheeja Lovely, K.L.P., Gokulakrishnan, N., Srinivasu,
P., Mori, T., Murugesan, V., Sivamurugan, V. & Ariga, K. 2007.
Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos
in aqueous suspension. Journal of Molecular Catalysis A: Chemical
266(1-2): 149-157.
Baletto,
F., Mottet, C., Rapallo, A., Rossi, G. & Ferrando, R. 2004.
Growth and energetic stability of AgNi core–shell clusters. Surface
Science 566(1): 192-196.
Basak,
S., Tiwari, V., Fan, J., Achilefu, S., Sethi, V. & Biswas, P.
2011. Single step aerosol synthesis of nanocomposites by aerosol
routes: γ-Fe2O3/SiO2 and their
functionalization. Journal of Material Research 26(10): 1225-1233.
Chen,
T., Zheng, Y., Lin, J.M. & Chen, G. 2008. Study on the photocatalytic
degradation of methyl orange in water using Ag/ZnO as catalyst by
liquid chromatography electrospray ionization ion-trap mass spectrometry.
Journal of the American Society for Mass Spectrometry 19(7):
997-1003.
Chen,
Y.W., Qiao, Q., Liu, Y.C. & Yang, G.L. 2009. Size-controlled
synthesis and optical properties of small-sized ZnO nanorods. The
Journal of Physical Chemistry C 113(18): 7497-7502.
Chiu,
W.S., Khiew, P.S., Cloke, M., Isa, D., Tan, T.K., Radiman, S., Abd.
Shukor, R., Abd. Hamid, M.A., Huang, N.M., Lim, H.N. & Chia,
C.H. 2010. Photocatalytic study of two-dimensional ZnO nanopellets
in the decomposition of methylene blue. Chemical Engineering
Journal 158(2): 345-352.
Daneshvar,
N., Salari, D. & Khataee, A.R. 2004. Photocatalytic degradation
of azo dye acid red 14 in water on ZnO as an alternative catalyst
to TiO2. Journal of Photochemistry & Photobiology A: Chemistry
162(2-3): 317-322.
Dar,
G.N., Umar, A., Zaidi, S.A., Baskoutas, S., Hwang, S.W., Abaker,
M., Al-Hajry, A. & Al-Sayari, S.A. 2012. Ultra-high sensitive
ammonia chemical sensor based on ZnO nanopencils. Talanta 89(1):
155-161.
Debanath,
M.K. & Karmakar, S. 2013. Study of blueshift of optical band
gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature
wet chemical method. Materials Letters 111(1): 116-119.
Dermenci,
K.B., Ebin, B. & Gürmen,
S. 2012. Production of spherical Ag/ZnO nanocomposite
particles for photocatalytic applications. World Academy of Science
& Technology 67(1): 682-684.
Ding,
Y. & Wang, Z.L. 2009. Structures of planar defects in ZnO nanobelts
and nanowires. Micron 40(3): 335-342.
Dodd,
A.C., McKinley, A.J., Saunders, M. & Tsuzuki, T. 2006. Effect
of particle size on the photocatalytic activity of nanoparticulate
zinc oxide. Journal of Nanoparticle Research 8(1): 43-51.
Georgekutty,
R., Seery, M.K. & Pillai, S.C. 2008. A highly efficient Ag-ZnO
photocatalyst: synthesis, properties and mechanism. The Journal
of Physical Chemistry C 112(35): 13563-13570.
Gu,
C.D., Cheng, C., Huang, H.Y., Wong, T.L., Wang, N. & Zhang,
T.Y. 2009. Growth and photocatalytic activity of dendrite-like ZnO@Ag
heterostructure nanocrystals. Crystal Growth & Design 9(7):
3278-3285.
Han,
Z., Liao, L., Wu, Y., Pan, H., Shen, S. & Chen, J. 2012. Synthesis
and photocatalytic application of oriented hierarchical ZnO flower-rod
architectures. Journal of Hazardous Materials 6(217): 100-106.
Henrich,
V.E. & Cox, P.A. 1994. The Surface Science of Metal Oxides.
Cambridge: University Press.
Hong,
R.Y., Li, J.H., Chen, L.L., Liu, D.Q., Li, H.Z., Zheng, Y. &
Ding, J. 2009. Synthesis, surface modification and photocatalytic
property of ZnO nanoparticles. Powder Technology 189(3):
426-432.
Jin,
Y., Cui, Q., Wang, K., Hao, J., Wang, Q. & Zhang, J. 2011. Investigation
of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals.
Journal of Applied Physics 109(5): 53521-53525.
Jingjing,
W., Nicolas, S., Pierre-Antoine, A. & Marie-Paule, P. 2015.
Surface plasmon resonance properties of silver nanocrystals differing
in size and coating agent ordered in 3D supracrystals. Chemistry
of Materials 27(16): 5614-5621.
Kalandaragh, Y.A.,
Khodayari, A. & Behboudnia, M. 2009. Ultrasound-assisted synthesis
of ZnO semiconductor nanostructures. Materials Science in Semiconductor Processing
12(4-5): 142-145.
Karunakaran, C.,
Rajeswari, V. & Gomathisankar, P. 2011. Combustion synthesis
of ZnO and Ag-doped ZnO and their bactericidal and photocatalytic
activities. Superlattices and Microstructures 50(3): 234-241.
Kuo, T.J., Lin,
C.N., Kuo, C.L. & Huang, M.H. 2007. Growth of ultralong ZnO
nanowires on silicon substrates by vapor transport and their use
as recyclable photocatalysts. Chemistry of Materials 19(21):
5143-5147.
Lany, S. &
Zunger, A. 2008. Assessment of correction methods for the band-gap
problem and for finite-size effects in supercell defect calculations:
Case studies for ZnO and GaAs. Physical Review. B: Condensed
Matter 78(23): 2351041-2351066.
Li, L., Salvador,
P.A. & Rohrer, G.S. 2014. Photocatalysts with internal electric
fields. Nanoscale 6(1): 24-42.
Li, L., Wang, W.,
Liu, H., Liu, X., Song, Q. & Ren, S. 2009. First principles
calculations of electronic band structure and optical properties
of Cr-doped ZnO. The Journal of Physical Chemistry C 113(19):
8460-8464.
Min, Y., Akbulut,
M., Kristiansen, K., Golan, Y. & Israelachivili, J. 2008. Role
of interparticle and external forces on the assembly and properties
of nanoparticle materials. Nature Materials 7(7): 527-538.
Panizz, M., Barbucci,
A., Ricotti, R. & Cerisola, G. 2007. Electrochemical degradation
of methylene blue. Separation and Purification Technology 54(3):
382-387.
Pawinrat, P., Mekasuwandumrong,
O. & Panpranot, J. 2009. Synthesis of Au-ZnO and Pt-ZnO nanocomposites
by one-step flame spray pyrolysis and its application for photocatalytic
degradation of dyes. Catalysis Communications 10(10): 1380-1385.
Pradhan, M., Sarkar,
S., Sinha, A.K., Basu, M. & Pal, T. 2010. High yield synthesis
of 1D Rh nanostructure from surfactant mediated reductive pathway
and their shape transformation. The Journal of Physical Chemistry
C 114(39): 16129-16142.
Racles, C., Nistor,
A. & Cazacu, M. 2013. A silica-silver nanocomposite obtained
by sol-gel method in the presence of silver nanoparticles. Central
European Journal of Chemistry 11(10): 1689-1698.
Soltaninezhad,
M. & Aminifar, A. 2011. Study nanostructures of semiconductor
zinc oxide (ZnO) as a photocatalyst for the degradation of organic
pollutants. International Journal of Nano Dimension 2(2):
137-145.
Tian, C., Zhang,
Q., Wu, A., Jiang, M., Liang, Z., Jiang, B. & Fu, H. 2012. Cost-effective
large-scale synthesis of ZnO photocatalyst with excellent performance
for dye photodegradation. Chemical Communications 48(23):
2858-2860.
Ullah, R. &
Dutta, J. 2008. Photocatalytic degradation of organic dyes with
manganese-doped ZnO nanoparticles. Journal of Hazardous Materials
156(1-3): 194-200.
Ye, X.Y., Zhou,
Y.M., Sun, Y.Q., Chen, J. & Wang, Z.Q. 2009. Preparation and
characterization of Ag/ZnO composites via a simple hydrothermal
route. Journal of Nano Research 11(5): 1159-1166.
Zhan, Z., Chen,
D., Lv, P., Liu, D., Yan, F., Chen, X. & Huang, F. 2009. Subsolidus
phase relations in the system ZnO–B2O3–
V2O5. Journal of Alloys
and Compounds 475(1-2): 122-125.
Zheng, Y., Chen,
C., Zhan, Y., Lin, X., Zheng, Q., Wei, K. & Zhu, J. 2008. Photocatalytic
activity of Ag/ZnO heterostructure nanocatalyst: correlation between
structure and property. The Journal of Physical Chemistry C 112(29):
10773-10777.
Zheng, Y.H., Zheng,
L.R., Zhan, Y.Y., Lin, X.Y., Zheng, Q. & Wei, K.M. 2007. Ag/ZnO
heterostructure nanocrystals: synthesis, characterization and photocatalysis.
Inorganic Chemistry 46(17): 6980-6986.
Zhu, L., Zhang,
J., Chen, Z., Liu, K. & Gao, H. 2013. Effect of Cu2O
morphology on photocatalytic hydrogen generation and chemical stability
of TiO2/Cu2O
composite. Journal of Nanoscience and Nanotechnology 13(7):
5104-5108.
*Pengarang untuk surat-menyurat; email:
shahidan@ukm.edu.my
|