Sains Malaysiana 45(8)(2016): 1265–1273

Pertumbuhan dan Penambahbaikan Nanokomposit Ag-ZnO untuk Aktiviti Fotomangkin

(Growth and Improvement of Ag-ZnO Nanocomposites for Photocatalytic Activity)

 

M.T.M. AYOB1, H.M.K. MOHD1, I. ABDUL RAHMAN1,2, F. MOHAMED1,2, N.M. HIDZIR1,2

& S. RADIMAN1,2*

 

1Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Penyelidikan Teknologi Nuklear, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 20 April 2015/Diterima: 26 November 2015

 

 

ABSTRAK

Kami melaporkan hasil kajian terhadap nanokomposit Ag-ZnO dengan nisbah berat yang berbeza bagi Ag:ZnO (0:10, 7:10 & 25:10) yang telah disediakan melalui kaedah sonokimia. Kajian fotomangkin terhadap nanokomposit Ag-ZnO menunjukkan peningkatan kecekapan fotomangkin terhadap foto-penguraian larutan akues metilena biru berbanding nanobahan ZnO tulen di bawah penyinaran cahaya nampak. Sampel Ag-ZnO pada nisbah 7:10 menunjukkan aktiviti fotomangkin terbaik dan mencapai kadar penguraian sehingga 94% bagi tempoh masa penguraian selama 80 min, diikuti 86% bagi sampel ZnO tulen dengan menggunakan kaedah yang sama. Morfologi, struktur bahan, sifat optik dan kehabluran bagi nanokomposit Ag-ZnO juga dibincangkan menerusi data yang diperoleh melalui mikroskop elektron transmisi, spektroskopi ultralembayung-cahaya nampak dan difraktometer analisis sinar-X. Hasil kajian menunjukkan bahawa dengan penambahan zarah Ag kepada ZnO telah meningkatkan kadar serapan cahaya bagi ZnO di kawasan cahaya nampak dan meningkatkan kadar pemisahan cas foto-aruhan bagi menghasilkan rawatan air tercemar pewarna yang lebih baik.

 

Kata kunci: Ag-ZnO; foto-penguraian; metilena biru; rawatan air tercemar

 

ABSTRACT

We report the research results of Ag-ZnO nanocomposites with different weight ratio of Ag:ZnO (0:10, 7:10 & 25:10) which were prepared by sonochemical method. The photocatalytic study of Ag-ZnO nanocomposites showed enhanced photocatalytic efficiency of methylene blue aqueous solution photodegradation compared with the pure ZnO nanoparticle under visible light irradiation. The Ag-ZnO at a ratio of 7:10 displayed the best photocatalytic activity and reached 94% degradation rate for 80 min degradation time, followed by 86% for pure ZnO by the same method. The morphological, structural, optical properties and crystallinity of the Ag-ZnO nanocomposites were also elucidated with the data obtained from transmission electron microscopy, ultraviolet-visible spectroscopy and X-ray diffractometer analyses, respectively. The results showed that by adding particles of Ag to ZnO increases the absorbance of ZnO in the visible region and enhances the photoinduced charge separation rate for better wastewater treatment.

 

Keywords: Ag-ZnO; methylene blue; photodegradation; wastewater treatment

RUJUKAN

Alammar, T. & Mudring, A.V. 2009. Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Material Letter 63(9-10): 732-735.

Anandan, S., Vinu, A., Sheeja Lovely, K.L.P., Gokulakrishnan, N., Srinivasu, P., Mori, T., Murugesan, V., Sivamurugan, V. & Ariga, K. 2007. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. Journal of Molecular Catalysis A: Chemical 266(1-2): 149-157.

Baletto, F., Mottet, C., Rapallo, A., Rossi, G. & Ferrando, R. 2004. Growth and energetic stability of AgNi core–shell clusters. Surface Science 566(1): 192-196.

Basak, S., Tiwari, V., Fan, J., Achilefu, S., Sethi, V. & Biswas, P. 2011. Single step aerosol synthesis of nanocomposites by aerosol routes: γ-Fe2O3/SiO2 and their functionalization. Journal of Material Research 26(10): 1225-1233.

Chen, T., Zheng, Y., Lin, J.M. & Chen, G. 2008. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. Journal of the American Society for Mass Spectrometry 19(7): 997-1003.

Chen, Y.W., Qiao, Q., Liu, Y.C. & Yang, G.L. 2009. Size-controlled synthesis and optical properties of small-sized ZnO nanorods. The Journal of Physical Chemistry C 113(18): 7497-7502.

Chiu, W.S., Khiew, P.S., Cloke, M., Isa, D., Tan, T.K., Radiman, S., Abd. Shukor, R., Abd. Hamid, M.A., Huang, N.M., Lim, H.N. & Chia, C.H. 2010. Photocatalytic study of two-dimensional ZnO nanopellets in the decomposition of methylene blue. Chemical Engineering Journal 158(2): 345-352.

Daneshvar, N., Salari, D. & Khataee, A.R. 2004. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry & Photobiology A: Chemistry 162(2-3): 317-322.

Dar, G.N., Umar, A., Zaidi, S.A., Baskoutas, S., Hwang, S.W., Abaker, M., Al-Hajry, A. & Al-Sayari, S.A. 2012. Ultra-high sensitive ammonia chemical sensor based on ZnO nanopencils. Talanta 89(1): 155-161.

Debanath, M.K. & Karmakar, S. 2013. Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Materials Letters 111(1): 116-119.

Dermenci, K.B., Ebin, B. & Gürmen, S. 2012. Production of spherical Ag/ZnO nanocomposite particles for photocatalytic applications. World Academy of Science & Technology 67(1): 682-684.

Ding, Y. & Wang, Z.L. 2009. Structures of planar defects in ZnO nanobelts and nanowires. Micron 40(3): 335-342.

Dodd, A.C., McKinley, A.J., Saunders, M. & Tsuzuki, T. 2006. Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. Journal of Nanoparticle Research 8(1): 43-51.

Georgekutty, R., Seery, M.K. & Pillai, S.C. 2008. A highly efficient Ag-ZnO photocatalyst: synthesis, properties and mechanism. The Journal of Physical Chemistry C 112(35): 13563-13570.

Gu, C.D., Cheng, C., Huang, H.Y., Wong, T.L., Wang, N. & Zhang, T.Y. 2009. Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals. Crystal Growth & Design 9(7): 3278-3285.

Han, Z., Liao, L., Wu, Y., Pan, H., Shen, S. & Chen, J. 2012. Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures. Journal of Hazardous Materials 6(217): 100-106.

Henrich, V.E. & Cox, P.A. 1994. The Surface Science of Metal Oxides. Cambridge: University Press.

Hong, R.Y., Li, J.H., Chen, L.L., Liu, D.Q., Li, H.Z., Zheng, Y. & Ding, J. 2009. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technology 189(3): 426-432.

Jin, Y., Cui, Q., Wang, K., Hao, J., Wang, Q. & Zhang, J. 2011. Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals. Journal of Applied Physics 109(5): 53521-53525.

Jingjing, W., Nicolas, S., Pierre-Antoine, A. & Marie-Paule, P. 2015. Surface plasmon resonance properties of silver nanocrystals differing in size and coating agent ordered in 3D supracrystals. Chemistry of Materials 27(16): 5614-5621.

Kalandaragh, Y.A., Khodayari, A. & Behboudnia, M. 2009. Ultrasound-assisted synthesis of ZnO semiconductor nanostructures. Materials Science in Semiconductor Processing 12(4-5): 142-145.

Karunakaran, C., Rajeswari, V. & Gomathisankar, P. 2011. Combustion synthesis of ZnO and Ag-doped ZnO and their bactericidal and photocatalytic activities. Superlattices and Microstructures 50(3): 234-241.

Kuo, T.J., Lin, C.N., Kuo, C.L. & Huang, M.H. 2007. Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts. Chemistry of Materials 19(21): 5143-5147.

Lany, S. & Zunger, A. 2008. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. Physical Review. B: Condensed Matter 78(23): 2351041-2351066.

Li, L., Salvador, P.A. & Rohrer, G.S. 2014. Photocatalysts with internal electric fields. Nanoscale 6(1): 24-42.

Li, L., Wang, W., Liu, H., Liu, X., Song, Q. & Ren, S. 2009. First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. The Journal of Physical Chemistry C 113(19): 8460-8464.

Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachivili, J. 2008. Role of interparticle and external forces on the assembly and properties of nanoparticle materials. Nature Materials 7(7): 527-538.

Panizz, M., Barbucci, A., Ricotti, R. & Cerisola, G. 2007. Electrochemical degradation of methylene blue. Separation and Purification Technology 54(3): 382-387.

Pawinrat, P., Mekasuwandumrong, O. & Panpranot, J. 2009. Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catalysis Communications 10(10): 1380-1385.

Pradhan, M., Sarkar, S., Sinha, A.K., Basu, M. & Pal, T. 2010. High yield synthesis of 1D Rh nanostructure from surfactant mediated reductive pathway and their shape transformation. The Journal of Physical Chemistry C 114(39): 16129-16142.

Racles, C., Nistor, A. & Cazacu, M. 2013. A silica-silver nanocomposite obtained by sol-gel method in the presence of silver nanoparticles. Central European Journal of Chemistry 11(10): 1689-1698.

Soltaninezhad, M. & Aminifar, A. 2011. Study nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants. International Journal of Nano Dimension 2(2): 137-145.

Tian, C., Zhang, Q., Wu, A., Jiang, M., Liang, Z., Jiang, B. & Fu, H. 2012. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chemical Communications 48(23): 2858-2860.

Ullah, R. & Dutta, J. 2008. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous Materials 156(1-3): 194-200.

Ye, X.Y., Zhou, Y.M., Sun, Y.Q., Chen, J. & Wang, Z.Q. 2009. Preparation and characterization of Ag/ZnO composites via a simple hydrothermal route. Journal of Nano Research 11(5): 1159-1166.

Zhan, Z., Chen, D., Lv, P., Liu, D., Yan, F., Chen, X. & Huang, F. 2009. Subsolidus phase relations in the system ZnO–B2O3– V2O5. Journal of Alloys and Compounds 475(1-2): 122-125.

Zheng, Y., Chen, C., Zhan, Y., Lin, X., Zheng, Q., Wei, K. & Zhu, J. 2008. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. The Journal of Physical Chemistry C 112(29): 10773-10777.

Zheng, Y.H., Zheng, L.R., Zhan, Y.Y., Lin, X.Y., Zheng, Q. & Wei, K.M. 2007. Ag/ZnO heterostructure nanocrystals: synthesis, characterization and photocatalysis. Inorganic Chemistry 46(17): 6980-6986.

Zhu, L., Zhang, J., Chen, Z., Liu, K. & Gao, H. 2013. Effect of Cu2O morphology on photocatalytic hydrogen generation and chemical stability of TiO2/Cu2O composite. Journal of Nanoscience and Nanotechnology 13(7): 5104-5108.

 

 

*Pengarang untuk surat-menyurat; email: shahidan@ukm.edu.my

 

 

 

 

sebelumnya