Sains Malaysiana 45(8)(2016): 1281–1287
Influence
of Crystal Structural Orientation on Impedance and Piezoelectric
Properties of KNN Ceramic Prepared using Sol-Gel Method
(Pengaruh
Orientasi Struktur Hablur ke atas Sifat Impedans dan Piezoelektrik
Seramik KNN yang Disediakan menggunakan Kaedah Sol-Gel)
I.
IZZUDDIN,
M.H.H.
JUMALI*,
Z. ZALITA, J.N.
HUWAIDA
& R. AWANG
Pusat Pengajian
Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia
43600 Bangi, Selangor,
Malaysia
Diserahkan: 20
April 2015/Diterima: 26 November 2015
ABSTRACT
The aim of this study was to
investigate the effect of structural orientation on the impedance
and piezoelectric properties of Ka0.5Na0.5NbO3 (KNN)
ceramic synthesized using modified sol-gel method. Dried xerogel
was heated at 800oC for 90 min and the aggregates were grinded to powder
form. SEM micrographs confirmed that the powder consist of bimodal
particles in nm and μm size regimes. The powder was compacted
into 13 mm diameter pellet and sintered at 1000oC
for 6 h. Then the pellets were poled at 4.0kV/mm at 100oC
for 30 min. The as-sintered pellets displayed different sizes of
cuboidal granules forming a relatively dense sample. The XRD and
Raman spectroscopy results confirmed the formation of perovskite
KNN
with monoclinic crystal structure. The compositional
analysis using Vegard’s law showed that the K:Na ratio was 0.5:0.5.
Dramatic intensity enhancement in (110) reflection and subsequent
reduction in (100) reflection as observed in X-ray diffractograms
for the poled pellet suggest permanent shift in crystal orientation.
Consequently, the Nyquist impedance plot of a Debye type semicircular
arc was altered to a combination of a depressed semicircular arc.
Unlike the initial plot, the real impedance, Z′
exhibited frequency dependence at low frequency regime. In addition,
the relaxation time, τ of KNN sample shifted to lower frequency
after the structural re-orientation while piezoelectric constant,
d33
along (110) direction significantly improved from
5 to 35 pC/N.
Keywords: Domain; d33
constant; nanosize; poling; Vegards law
ABSTRAK
Tujuan penyelidikan ini ialah
untuk mengkaji kesan orientasi
stuktur hablur ke atas sifat elektrik impedan dan piezoelektrik
bagi seramik Ka0.5Na0.5NbO3
(KNN)
yang disintesis melalui kaedah sol gel yang diubah suai. Xerogel
KNN
yang telah kering dipanaskan pada suhu 800oC
selama 90 min dan agregat yang terhasil dikisar untuk menghasilkan
serbuk KNN.
Mikrograf SEM mengesahkan saiz partikel KNN yang
disintesis terdiri daripada partikel bimod iaitu dalam rejim bersaiz
nm dan μm. Seterusnya KNN dipadatkan ke bentuk pelet berdiameter
13 mm dan disinter pada suhu 1000oC
selama 6 jam diikuti dengan pengutuban pada 4kV/mm pada suhu 100oC
selama 30 min. Sampel KNN yang disinter menunjukkan pembentukan
butiran kuboid pelbagai saiz yang secara relatifnya membentuk sampel
yang tumpat. Hasil pencirian XRD dan Raman mengesahkan pembentukan
perovskit KNN dengan struktur hablur monoklinik.
Analisis komposisi menggunakan hukum Vegard menunjukkan nisbah bagi
K:Na adalah 0.5:0.5. Peningkatan keamatan yang mendadak pada satah
(110) dan penurunan ketara keamatan pada satah (100) seperti yang
diperhatikan pada difraktogram sinar-X bagi pelet yang dikutubkan
menandakan peralihan kekal terhadap orientasi hablur. Akibatnya,
graf impedans Nyquist lengkungan semibulatan jenis Debye berubah
kepada gabungan lengkungan semibulatan terhimpit dan permulaan bagi
lengkungan lain pada frekuensi rendah. Tidak seperti plot yang asal,
graf impedan nyata, Z′ adalah bebas frekuensi pada rejim frekuensi rendah. Selain
itu, masa santaian, τ bagi sampel KNN berganjak
kepada frekuensi yang lebih rendah selepas pengorientasi semula
manakala pemalar piezoelektrik, d33 pada arah (110) menokok secara signifikan
daripada 5 kepada 35 pC/N.
Kata kunci: Domain; hukum Vegards; pemalar d33;
pengutuban; saiz nano
RUJUKAN
Cheng, X., Gou,
Q., Wu, J., Wang, X., Zhang, B., Xiao, D., Zhu, J., Wang, X. &
Lou, X. 2014. Dielectric, ferroelectric, and piezoelectric properties
in potassium sodium niobate ceramics with rhombohedral-orthorhombic
and orthorhombic-tetragonal phase boundaries. Ceramics International
40(4): 5771-5779.
Denton, A.R. &
Ashcroft, N.W. 1991. Vegard’s law. Physical Review A 43(6):
3161-3164.
Dolhen, M., Mahajan,
A., Pinho, R., Costa, E., Trolliard, G. & Vilarinho, P.M. 2015.
Sodium potassium niobate (K0.5Na0.5NbO3,
KNN) thick films by electrophoretic deposition. Journal of RCS
Advances 5: 4698-4706.
Guo, H., Zhang,
S., Beckman, S.P. & Tan, X. 2013. Microstructural origin for
the piezoelectricity evolution in (K0.5Na0.5)NbO3-
based lead-free ceramics. Journal of Applied Physics 114:
154102.
Hollenstein, E.,
Damjanovic, D. & Setter, N. 2007. Temperature stability of the
piezoelectric properties of Li-modified KNN ceramics. Journal
of the European Ceramic Society 27(13- 15): 4093-4097.
Izzuddin, I., Jumali,
M.H.H. & Zalita, Z. 2014. Structural and electrical evaluation
of KNN ceramic. AIP Conference Proceedings in Selangor, Malaysia
from 9-11 April. 1614: 90.
Johscher, A.K.
1983. Dielectric Relaxation in Solid. London: Chelsea Dielectric
Press. pp 56-57.
Kim, J.S., Choi,
B.C., Jeong, J.H., Chung, S.T., Cho, S. & Kim, I.W. 2009. Low-frequency
dielectric dispersion and impedance spectroscopy of lead-free (Na0.5Bi0.5)TiO3
(NBT) ferroelectric ceramics. Journal of the Korean Physical
Society 55(2): 879-883.
Li, G., Wu, X.Q.,
Ren, W., Shi, P., Chen, X.F. & Yao, X. 2012. Effects of excess
amount of K and Na on properties of (K0.48Na0.52)NbO3 thin
films. Ceramics International 38(Supp. 1: S279-S281).
Liu, G.Z., Wang,
C., Wang, C.C., Qiu, J., He, M., Xing, J., Jin, K.J., Lu, H.B. &
Yang, G.Z. 2008. Effects of interfacial polarization on the dielectric
properties of BiFeO3 thin film capacitors. Applied
Physics Letters 92(12): 122903.
Matsubara, M.,
Yamaguchi, T., Sakamoto, W., Kikuta, K., Yogo, T. & Hirano,
S. 2005. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics.
Journal of American Ceramic Society 88: 1190-1196.
McConnell, A.A.,
Aderson, J.S. & Rao, C.N.R. 1976. Raman spectra of niobium oxides.
Spectrochimica Acta Part A: Molecular Spectroscopy 32(5):
1067-1076.
Prasad, K., Bhagat,
S., Priyanka, AmarNath, K., Chandra, K.P. & Kulkarni, A.R. 2010.
Electrical properties of BaY0.5Nb0.5O3 ceramic:
Impedance spectroscopy analysis. Physica B: Condensed Matter
405(17): 3564-3571.
Rubio-Marcos, F.,
Marchet, P., Merle-Méjean, T. & Fernandez, J.F. 2010a. Role
of sintering time, crystalline phases and symmetry in the piezoelectric
properties of lead-free KNN-modified ceramics. Materials Chemistry
and Physics 123(1): 91-97.
Rubio-Marcos, F.,
Romero, J.J., Ochoa, D.A., García, J.E., Perez, R. & Fernandezz,
J.F. 2010b. Effects of poling process on KNN-modified piezoceramic
properties. J. Am. Ceram. Soc. 93(2): 318-321.
Rubio-Marcos, F.,
Romero, J.J., Martín-Gonzalez, M.S. & Fernández, J.F. 2010c.
Effect of stoichiometry and milling processes in the synthesis and
the piezoelectric properties of modified KNN nanoparticles by solid
state reaction. Journal of the European Ceramic Society 30(13):
2763-2771.
Safari, A. &
Akdogan, E.K. 2008. Piezoelectric and Acoustic Materials for
Transducer Applications. New York: Springer. p. 44.
Saeri, M.R., Barzegar,
A. & Ahmadi Moghadam, H. 2011. Investigation of nano particle
additives on lithium doped KNN lead free piezoelectric ceramics.
Ceramics International 37(8): 3083-3087.
Saito, Y., Takao,
H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T.
& Nakamura, M. 2004. Lead-free piezoceramics. Nature 432:
84-87.
Schmidt,
R., Eerenstein, W., Winiecki, T., Morrison, F.D. & Midgley,
P.A. 2007. Impedance spectroscopy of epitaxial multiferroic thin
films. Physical Review B 75(24): 245111.
Tan, C.K.I., Yao, K., Goh, P.C. & Ma, J. 2012. 0.94(K0.5Na0.5)
NbO3–0.06LiNbO3 piezoelectric ceramics prepared
from the solid state reaction modified with polyvinylpyrrolidone
(PVP) of different molecular weights. Ceramics International
38(3): 2513-2519.
Wei, N., Wang,
J., Li, B., Huan, Y. & Li, L. 2015. Improvement of the piezoelectric
and ferroelectric properties of (K, Na)0.5NbO3
ceramics via two-step calcination-milling route. Ceramics International
41(8): 9555-9559.
Wongsaenmai, S.,
Ananta, S. & Yimnirun, R. 2012. Effect of Li addition on phase
formation behavior and electrical properties of (K0.5Na0.5)NbO3
lead free ceramics. Ceramics International 38(1): 147-152.
Zhao, Y., Zhao,
Y., Huang, R., Liu, R. & Zhou, H. 2012. Poling field dependence
of ferroelectric domains in tetragonal KNNLN ceramics. Ceramics
International 38: 6067-6070.
Zhengfa, L., Yongxiang,
L. & Jiwei, Z. 2011. Grain growth and piezoelectric property
of KNN-based lead-free ceramics. Current Applied Physics 11(3,
Supplement): S2-S13.
*Pengarang untuk surat-menyurat; email:
hafizhj@ukm.edu.my
|