Sains Malaysiana 46(6)(2017): 925–932
http://dx.doi.org/10.17576/jsm-2017-4606-12
Field Evaluation of Newly-Developed Controlled Release Fertilizer on
Rice Production and Nitrogen Uptake
(Penilaian Lapangan Terhadap Baja Perlepasan Terkawal ke atas Penghasilan Padi dan pengambilan Nitrogen)
MOHAMMAD MU’AZ HASHIM*, MOHD KHANIF YUSOP, RADZIAH OTHMAN
& SAMSURI ABD. WAHID
Department of Land
Management, Faculty of Agriculture, Universiti Putra
Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan: 24 November 2015/Diterima: 28 Disember 2016
ABSTRACT
Implementation of sound
fertilizer management in rice cultivation is essential in optimizing
productivity and profitability. The use of controlled release fertilizer
(CRF)
to improve crop production in various cropping systems has been
widely explored, with new approaches and materials continually being
studied to produce new CRF. A field study was carried out to determine the efficiency
of local CRFs on rice production and N uptake
using MR220 CL1 rice variety. Ten different
types of CRFs consisting of two groups namely biochar impregnated
urea (BIU 300-5, BIU 300-10, BIU 700-5
and BIU 700-10) and palm stearin (PS)
coated urea with nitrification inhibitors (PS,
PS+DMPP-100,
PS+DMPP-50,
PS+DMPP-150,
PS+Cu and PS+Zn)
were used as treatments. Plant height, SPAD reading, 1000-grain weight
and harvest index (HI) showed significant improvement in
rice treated with both biochar impregnated and palm stearin coated
urea. With respect to grain yield, BIU 300-10, BIU 700-5,
BIU
700-10, PS+DMPP-100,
PS+DMPP-50,
PS+DMPP-150
and PS+Cu treatments significantly
increased rice yield. The CRFs mostly showed significantly higher
N uptake in rice, especially in rice grains, however, there was
no significant difference among treatments in soil residual ammonium
(NH4+-N).
The newly-developed CRFs showed huge potential as an alternative
for common urea, especially BIU 700-5, BIU 700-10,
PS+DMPP-100
and PS+DMPP-50, in increasing rice grain yield.
With proper approaches, these CRFs can contribute in improving
rice production to provide sufficient food for ever increasing population.
Keywords: Biochar
impregnated urea; efficiency; nitrification inhibitors; palm stearin; urea
ABSTRAK
Pengurusan pembajaan yang baik untuk penanaman padi adalah penting dalam meningkatkan pengeluaran dan keuntungan. Penggunaan baja perlepasan terkawal untuk meningkatkan pengeluaran tanaman telah dikaji secara meluas dan pelbagai pendekatan baru digunakan untuk menghasilkan baja yang terkini. Sebuah kajian lapangan telah dijalankan untuk menentukan keberkesanan baja perlepasan terkawal yang dihasilkan secara tempatan ke atas pengeluaran padi dan pengambilan N dengan menggunakan varieti padi MR220 CL1. Sepuluh jenis baja telah digunakan dalam kajian ini yang terdiri daripada dua kumpulan, iaitu urea diimpregnasi dengan biochar (BIU 300-5, BIU 300-10, BIU 700-5 dan BIU 700-10) dan urea bersalut stearin sawit dengan penghalang nitrifikasi (PS, PS+DMPP-100, PS+DMPP-50, PS+DMPP-150, PS+Cu dan PS+Zn). Ketinggian pokok, bacaan SPAD, berat 1000 biji padi dan indeks tuaian menunjukkan peningkatan yang signifikan untuk padi yang dirawat menggunakan baja urea diimpregnasi dengan biochar dan urea bersalut stearin sawit. Penggunaan baja BIU 300-10, BIU 700-5, BIU 700-10, PS+DMPP-100, PS+DMPP-50, PS+DMPP-150 dan PS+Cu telah meningkatkan penghasilan padi dengan signifikan. Penggunaan baja perlepasan terkawal juga meningkatkan pengambilan N oleh pokok padi terutamanya dalam biji padi. Walau bagaimanapun, tiada kesan dapat diperhatikan untuk baki ammonium (NH4+-N) dalam tanah. Baja perlepasan terkawal yang baru ini dilihat berpotensi besar bagi menggantikan baja urea dalam meningkatkan hasil padi, terutamanya BIU 700-5, BIU 700-10, PS+DMPP-100 dan PS+DMPP-50. Dengan pendekatan yang bersesuaian, baja perlepasan terkawal ini mampu menyumbang kepada peningkatan hasil padi negara, seterusnya menyediakan bekalan makanan yang mencukupi untuk menampung jumlah penduduk yang semakin bertambah.
Kata kunci: Keberkesanan; penghalang nitrifikasi; stearin sawit; urea; urea diimpregnasi dengan biochar
RUJUKAN
Andraski,
T.W., Bundy, L.G. & Brye, K.R. 2000. Crop
management and corn nitrogen rate effects on nitrate leaching. Journal of
Environmental Quality 29: 1095-1103.
Association
of American Plant Food Control Officials (AAPFCO). 1995. Official Publication No. 48. Indiana, USA: Association of American
Plant Food Control Officials, Inc.
Atkinson,
C.J., Fitzgerald, J.D. & Hipps, N.A. 2010. Potential mechanisms for achieving agricultural benefits from biochar
application to temperate soils: A review. Plant and Soil 337: 1-18.
Azeem,
B., KuShaari, K., Man, Z.B., Basit,
A. & Thanh, T.H. 2014. Review on materials and methods to
produce controlled release coated urea fertilizer. Journal of Controlled
Release 181: 11-21.
Bray,
R.H. & Kurtz, L.T. 1945. Determination of total, organic,
and available forms of phosphorus in soils. Soil Science 59:
39-45.
Bremner,
J.M. & Mulvaney, C.S. 1982. Total nitrogen. In Methods of Soil Analysis, edited
by Page, A.L., Miller, R.H. & Keeny, D.R. Madison. USA: American Society of Agronomy and Soil
Science Society of America. pp. 1119-1123.
Carson,
L.C., Ozores-Hampton, M. & Morgan, K.T. 2013. Nitrogen release from controlled-release fertilizers in
seepage-irrigated tomato production in South Florida. Proceedings of
the Florida State Horticultural Society 126: 131-135.
Carson,
L.C. & Ozores-Hampton, M. 2013. Factors affecting nutrient availability, placement, rate, and
application timing of controlled-release fertilizers for Florida vegetable
production using seepage irrigation. HortTechnology 23: 553-562.
Chapman,
H.D. 1965. Cation-exchange capacity. Agronomy
Journal 9: 891-901.
Chaturvedi, I.
2005. Effect of nitrogen fertilizers on growth, yield and
quality of hybrid rice (Oryza sativa). Journal of Central European Agriculture 6(4): 611-618.
Chu,
H., Hosen, Y. & Yagi, K. 2004. Nitrogen oxide emission and microbial activities in a Japanese Andisol as affected by N-fertilizer management. Japanese
Society of Soil Science and Plant Nutrition 50(2): 287-292.
Dalton,
H. & Brand-Hardy, R. 2003. Nitrogen: The essential public
enemy. Journal of Applied Ecology 40: 771-781.
Department
of Agriculture of Malaysia (DOA). 1993. Panduan Mengenali Siri-Siri Tanah Utama di Semenanjung Malaysia. Kuala Lumpur: Jabatan Pertanian Semenanjung Malaysia.
Dimin,
M.F., Se, S.M., Azizah, S. & Hashim,
M.M. 2014. Urea impregnated biochar to minimize nutrients loss
in paddy soils. International Journal of Automotive and Mechanical
Engineering 10: 2016-2024.
Dobermann,
A. & Fairhurst, T.H. 2000. Rice:
Nutrient Disorders and Nutrient Management. Los Banos,
Philippines: International Rice Research Institute.
Downie, A., Crosky, A. & Munroe, P. 2009. Physical
properties of biochar. In Biochar for Environmental Management:
Science and Technology, edited by Lehmann, J. & Joseph, S. London: Earthscan. pp. 13-29.
Evans,
J.R. 1989. Photosynthesis and nitrogen relationships in
leaves of C3 plants. Oecologia 78: 9-19.
Fazlina,
N.S., Khanif, Y.M. & Oad,
F.C. 2014. Nutrient uptake pH changes and yield of rice under
slow release sulfur coated urea fertilizers. Australian Journal of Crop
Science 8(10): 1359-1366.
Galloway,
J.N. & Cowling, E.B. 2002. Reactive nitrogen and the world:
200 years of change. AMBIO 31(2): 64-71.
Ghosh,
B.C. & Bhat, R. 1998. Environmental hazards of nitrogen loading in
wetland rice fields. Environmental Pollution 102(1): 123-126.
Gong,
P., Zhang, L., Wu, Z. & Li, D. 2012. Laboratory
study of the effects of nitrification inhibitors on the abundance of
ammonia-oxidizing bacteria and archaea in a Hap-Ustic Luvisol. African Journal of Microbiology Research 6(48): 7428-7434.
Hanafi, M.M., Eltaib, S.M. & Ahmad, M.B.
2000. Physical and chemical characteristics of controlled release compound
fertilizer. European Polymer Journal 36(10): 2081-2088.
Hashim,
M.M., Khanif, Y.M., Radziah,
O. & Samsuri, A.W. 2015. Characterization
of nitrogen uptake pattern in Malaysian rice MR219 at different growth stages
using 15N Isotope. Rice Science 22(5): 250-254.
Jones,
C., Olson-Rutz, K. & Dinkins, C.P. 2011. Nutrient
Uptake Timing by Crops. Montana, USA: Montana State University.
Katyal,
J.C., Bijay-Singh, Vlek,
P.L.G. & Craswell, E.T. 1985. Fate and efficiency
of nitrogen fertilizers applied to wetland rice: II. Punjab, India. Fertilizer
Research 6: 279-290.
Kiran,
J.K., Khanif, Y.M., Amminuddin,
H. & Anuar, A.R. 2010. Effects
of controlled release urea on the yield and nitrogen nutrition of flooded rice. Communications in Soil Science and Plant Analysis 41(7): 811-819.
Lawlor,
D.W. 2002. Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key
to understanding production systems. Journal of Experimental Botany 53:
773-787.
Loh,
C.W.F., Grabosky, J.C. & Bassuk,
N.L. 2002. Using the SPAD 502 meter to access chlorophyll and nitrogen content of Benjamin
fig and cottonwood leaves. HortTechnology 12(4):
682-686.
Mae, T., Inaba, A., Kaneta, Y., Masaki,
S., Sasaki, M., Aizawa, M., Okawa, S., Hasegawa, S.
& Makino, A. 2006. A large-grain rice cultivar, Akita 63, exhibits high
yields with high physiological N-use efficiency. Field Crops Research 97(2-
3): 227-237.
Malaysia
Agricultural Research and Development Institute (MARDI). 2003. Varieti Padi MR220.
Kuala Lumpur: Institut Penyelidikan dan Kemajuan Pertanian Malaysia.
Mehlich, A.
1953. Determination of P, Ca, Mg, K, Na, and NH4. Raleigh,
North Carolina: North Carolina Soil Test Division (Mimeo).
Mikkelsen,
D.S., Jayaweera, G.R. & Rolston, D.E. 1995. Nitrogen
fertilization practices of lowland rice culture. In Nitrogen
Fertilization in the Environment, edited by Bacon, P.E. Sydney: Marcel
Dekker Inc. pp. 171-223.
Morgan, K.T., Cushman,
K.E. & Sato, S. 2009. Release mechanisms for slow- and controlled-release
fertilizers and strategies for their use in vegetable production. HortTechnology 19: 10-12.
Nasima,
J., Khanif, Y.M., Dharejo,
K.A., Arifin, A. & Hazandy,
A.H. 2011. A field evaluation of coated urea with biodegradable
materials and selected urease inhibitors. African Journal of
Biotechnology 10(85): 19729-19736.
Panda,
M.M., Mosier, A.R., Mohanty, S.K., Chakravorti, S.P., Chalam, A.B.
& Reddy, M.D. 1995. Nitrogen utilization by lowland rice as affected by
fertilization with urea and green manure. Fertilizer Research 40(3):
215-223.
Rovita, D.
& Killorn, R. 2008. Heavy-metal
inhibition of nitrification in selected Iowa soils treated with Stay-N 2000. Communications
in Soil Science and Plant Analysis 39: 972-982.
Sato,
C., Leung, S.W. & Schnoor, J.L. 1988. Toxic
response of Nitrosomonas europaeato copper in inorganic medium and wastewater. Water Research 22: 1117-1127.
Sharma, G.C. 1979. Controlled-release fertilizer and horticultural applications. Scientia Horticulturae11(2): 107-129.
Singh,
B., Bronson, K.F., Singh, Y. & Pasuquin, E. 2001. Nitrogen-15 balance
as affected by rice straw management in a rice-wheat rotation in northwest
India. Nutrient Cycling in Agroecosystems 59: 227-237.
Sohi,
S.P., Krull, E., Lopez-Capel, E. & Bol, R. 2010. A review of
biochar and its use and function in soil. Advances in Agronomy 105:
47-82.
Trenkel, M.E. 2010. Slow-
and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing
Nutrient Use Efficiency in Agriculture. Paris, France: International
Fertilizer Industry Association.
Uchida, R. 2000.
Essential nutrient for plant growth: Nutrients function and deficiency
symptoms. In Plant Nutrient Management in Hawaii’s Soils, Approaches for
Tropical and Subtropical Agriculture, edited by Silva, J.A. & Uchida,
R. Hawaii: University of Hawaii Press. pp. 31-55.
Yan,
X.Y., Akimoto, H. & Ohara, T. 2003. Estimation
of nitrous oxide, nitric oxide and ammonia emissions from croplands in East,
Southeast and South Asia. Global Change Biology 9: 1080-1096.
Zhu,
Z.L. & Chen, D.L. 2002. Nitrogen fertilizer use in China: Contributions to
food production impacts on the environment and best management strategies. Nutrient
Cycling in Agroecosystems 63: 117-127.
*Pengarang untuk surat-menyurat;
email: muazhashim@gmail.com
|