Sains Malaysiana 46(9)(2017): 1369–1377
http://dx.doi.org/10.17576/jsm-2017-4609-03
Fluorescence Quenching Reaction of Chlorophyll a by Tris(acetylacetonate)Iron(III)
in Various Solvents
(Tindak Balas Pemelindapan Kependarfluoran Klorofil a oleh
Tris(asetilacetonat)Iron(III) dalam Pelbagai Pelarut)
NARARAK
LEESAKUL1*,
DAWEENA
MASEN2
& GUENTER GRAMPP3
1Department
of Chemistry and Center for Innovation in Chemistry, Faculty of
Science, Prince of Songkla University, Hat-Yai, Songkhla 90110,
Thailand
2Public
Health Program, Faculty of Science and Technology, Southern College
of Technology
Nakorn
Si Thammarat 80110, Thailand
3Institute
of Physical and Theoretical Chemistry, Graz University of Technology,
Graz, A-8010
Austria
Diserahkan:
31 Ogos 2016/Diterima: 17 Januari 2017
ABSTRACT
Chlorophyll a is known
as the prevailing light absorbing pigment giving a strong absorption
and fluorescence emission in visible region. Quenching reactions
of the chlorophyll a fluorescence by Fe(acac)3 were precisely
investigated in various organic solvents which are benzene toluene,
ethanol, methanol, dmf, dmso and acetonitrile. Electron transfer
performance of chlorophyll a by Fe(acac)3 was
investigated from oxidative quenching reaction. Herein, the simplified
Rehm-Weller relationship was used to calculate the free energy change
of the photo-induced electron transfer reaction. Emission intensity
decreased when the concentration of Fe(acac)3 quencher
was increased. Non-linear Stern-Volmer plots are found to be affected
by inner filter effect more than the ground state complex formation.
Rate of quenching reactions (kq) were determined from the Stern-Volmer equation with corrected
inner filter effect. The rates of quenching reactions occurred faster
in high viscous solvents.
Keywords: Chlorophyll
a; oxidative quenching reaction; Stern-Volmer plotting
ABSTRAK
Klorofil a dikenali
sebagai pigmen penyerap cahaya yang memberikan penyerapan yang kuat
dan pelepasan kependarfluoran kawasan yang boleh dilihat. Tindak
balas pemelindapan klorofil a oleh Fe(acac)3 dikaji
secara tepat dalam pelbagai pelarut organik seperti benzena toluen,
etanol, metanol, dmf, dmso dan asetonitril. Prestasi pemindahan
elektron klorofil a oleh Fe(acac)3 telah
dikaji daripada tindak balas pemelindapan oksidatif. Di sini, hubungan
Rehm-Weller dipermudah telah digunakan untuk mengira perubahan tenaga
bebas tindak balas pemindahan elektron teraruh-foto. Keamatan pelepasan
menurun apabila kepekatan pelindap Fe(acac)3 meningkat.
Plot Stern-Volmer tak linear terjejas oleh kesan turas dalaman lebih
daripada pembentukan keadaan asas yang kompleks. Kadar tindak balas
pemelindapan (kq)
telah ditentukan daripada persamaan Stern-Volmer kesan turas dalaman
diperbetulkan. Kadar tindak balas pemelindapan berlaku dengan lebih
cepat dalam pelarut likat yang tinggi.
Kata kunci: Klorofil a; plot Stern-Volmer; tindak balas sepuhlindap
oksidatif
RUJUKAN
Amao, Y., Yamada, Y. & Aoki, K. 2004. Preparation and properties
of dye-sensitized solar cell using chlorophyll derivative immobilized
TiO2 film electrode. J. Photo. Photobiol.
A: Chem. 164: 47-51.
Arık, M., Celebi, N. & Onganer, Y. 2005. Fluorescence quenching
of fluorescein with molecular oxygen in solution. J. Photo. Photobiol.
A: Chem. 170: 105-111.
Borissevitch, I.E. 1999. More about the inner filter effect: Corrections
of Stern-Volmer fluorescence quenching constants are necessary at
very low optical absorption of the quencher. Journal of Luminescence
81: 219-224.
Durrant, J.R., Haque, S.A. & Palomares, E. 2004. Towards optimisation
of electron transfer processes in dye-sensitized solar cells. Coord.
Chem. Rev. 248: 1247-1257.
Falco, W.F., Queiroz, A.M., Fernandes, J., Botero, E.R., Falcăo,
E.A., Guimarăes, F.E.G., Peko, J.C.M., Oliveira, S.L., Colbeck,
I. & Caires, A.R.L. 2015. Interaction between chlorophyll and
silver nanoparticles: A close analysis of chlorophyll fluorescence
quenching. J. Photochem. Photobiol. A: Chemistry 299: 203-209.
Gazdaru, D. 2001. Characterization of the fluorescence quenching
of chlorophyll a by 1, 4 benzoquinone using the nonlinear. Journal
of Optoelectronics and Advanced Materials 3(1): 145-148.
Kathiravan, A., Chandramohan, M., Renganathan, R. & Sekar, S.
2009. Spectro Chimica Acta Part A: Molecular and Biomolecular
Spectroscopy 71: 1783-1787.
Lakowicz, J.R. 2006. Principles of Fluorescence Spectroscopy.
3rd ed. Springer: New York.
Landgraf, S. 2004. Use of ultrabright LEDs for the determination
of static and time-resolved fluorescence information of liquid and
solid crude oil samples J. Biochem. Biophysics Methods 61:
125-134.
Leesakul, N. 2007. Kinetics of fast photo - induced electron transfer
from Tris(bpy)ruthenium(II) and Tris(bpy) osmium(II) complexes to
iron (III) in water and n-alcohols.
Li, S. &
Inoue, H. 1991. Separation of manganese(II, III) chlorophylls. Anal.
Science 7: 121-124.
Liu, B.Q., Zhao, X.P.
& Luo, W. 2008. The synergistic effect of two photosynthetic
pigments in dye - sensitized mesoporous TiO2 solar cells,
Dye and Pigments 76: 327-331.
Medforth,
C., Muzzi, C.M., Shea, K.M., Smith, K.M., Abraham, R.J., Jia, S.
& Shelnutt, J.A. 1997. NMR studies of nonplanar porphyrins.
Part 2. Effect of nonplanar conformational distortions on the porphyrins
ring current. J. Chem. Soc. Perkin Trans. 2: 839-844.
Nandre,
J., Patil, S., Patil, V., Yu, F., Chen, L., Sahoo, S., Prior, T.,
Redshaw, C., Mahulikar, P. & Patil, U. 2014. A novel fluorescent
“turn-on” chemosensor for nanomolar detection of Fe(III) from aqueous
solution and its application in living cells imaging. Biosens.
Bioelectron. 61: 612-617.
Nanomura,
Y., Hatano, H., Fukuda, K. & Inoue, H.1994. Preparation and
determination of cobalt(II)chlorophylls by high-performance liquid
chromatography. Anal. Science 10: 117-119.
Nanomura,
Y., Igarashi, S., Yoshioka, N. & Inoue, H. 1997. Spectroscopic
properties of chlorophylls and their derivatives. Influence of molecular
structure on the electronic state. Chemical Physics 220:
155-166.
Richert,
S.A., Tsang, P.K.S. & Sawyer, D.T. 1989. Ligand - Centered Redox
Processes for MnL3, FeL3, and CoL3 Complexes
(L = Acetylacetonate, 8-Quinolinate, Picolinate, 2,2’-Bipyridyl,
1,10-Phenanthroline) and for Their Tetrakis (2,6-dichlorophenyl)
porphinato Complexes [(Por)]. Inorg. Chem. 28: 2471-2475.
Trifunac,
A.D. & Katz, J.J. 1974. State of chlorophyll a in vitro and
in vivo from electronic transition spectra, and the nature
of antenna chlorophyll. Biochimica et Biophysica Acta (BBA) -
Bioenergetics 368(2): 181-198.
Wang,
X.F., Matsuda, A., Koyama, Y., Nagae, H., Sasaki, S.I., Tamiaki,
H. & Wada, Y. 2006. Effects of plant carotenoid spacers on the
performance of a dye-sensitized solar cell using a chlorophyll derivative:
Enhancement of photocurrent determined by one electron-oxidation
potential of each carotenoid. Chem. Phys. Lett. 423: 470-475.
Xiaoqing,
L., Mingyu, S., Chao, L., Lu, Z., Wenhui, S. & Fashui, H. 2007.
Effects of CeCl3 on energy transfer and oxygen evolution in spinach photosystem
II. J. Rare Earths 25: 624-630.
Yamashita,
H. & Inoue, H. 1991. Determination of zinc(II) chlorophylls
and their derivatives by high performance liquid chromatography
with fluoro metric detection. Anal. Science 7: 1371-1374.
Zheng,
T. & Nolan, E.M. 2012. Siderophore-based detection of Fe(III)
and microbial pathogens. Metallomics 4: 866-880.
Zvezdanovic´,
J. & Markovic´, D. 2008. Bleaching of chlorophylls by UV - irradiation
in vitro: The effects on chlorophyll organization in acetone
and n - hexane. J. Serb. Chem. Soc. 73(3): 271-282.
*Pengarang untuk surat-menyurat;
email: nararak.le@psu.ac.th
|