Sains Malaysiana 46(9)(2017): 1549–1555
http://dx.doi.org/10.17576/jsm-2017-4609-25
Sintesis dan Sifat Termal Natrium Kanji Sulfat Dioscorea pentaphylla
(Synthesis and Thermal Properties of Dioscorea pentaphylla
Sodium Starch Sulfate)
M.S.
ELMI
SHARLINA,
AZWAN
MAT
LAZIM
& W.A. YAACOB*
Pusat Pengajian Sains
Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 6 September
2016/Diterima: 29 April 2017
ABSTRAK
Kanji Dioscorea pentaphylla telah diubah suai dengan pensulfatan dan
peneutralan bagi menghasilkan natrium kanji sulfat. Tindak balas
pensulfatan dilakukan dengan asid sulfurik dalam etanol dan air
pada suhu 0oC.
Darjah penukargantian dikira berdasarkan peratus karbon dan sulfur
yang ditentukan menggunakan penganalisis unsur CHNS.
Natrium kanji sulfat yang mempunyai darjah penukargantian dan
peratus nisbah berat hasil yang tinggi dipilih dan dicirikan dengan
spektrum transformasi Fourier inframerah (FT-IR) dan profil pembelauan sinar-X
(XRD).
Kehadiran dua puncak getaran regangan C-O-S dan S=O dalam spektrum
FT-IR
dan puncak berbeza yang terhasil dalam corak difraktogram
XRD
membuktikan tindak balas berlaku pada struktur kanji.
Sifat termal juga ditentukan dengan kalorimeter pengimbas pembezaan
(DSC) dan analisis termogravimetri
(TGA). Natrium kanji sulfat yang dihasilkan
mempunyai kestabilan termal yang baik kerana mempunyai suhu penguraian
pada 265oC. Natrium kanji sulfat ini sesuai dijadikan
bahan tambahan dalam penghasilan hidrogel, organogel dan filem
dengan sifat anionik kerana degradasi tidak terjadi di bawah suhu
ini.
Kata kunci: Dioscorea pentaphylla; natrium kanji sulfat; pensulfatan
ABSTRACT
Dioscorea pentaphylla starch
was modified by sulphation and neutralization to produce sodium
starch sulfate. The sulphation reaction was carried out with sulphuric
acid in ethanol and water at 0°C. The degree of substitution was
calculated based on the percentages of carbon and sulphur determined
using CHNS elemental
analyzer. Sodium starch sulfate which has high degree of substitution
and percentage of yield ratio by weight was chosen and characterized
by Fourier transform infrared (FT-IR) spectrum and X-ray diffraction
(XRD)
profile. The presence of two peaks belonging to stretching vibrations
of C-O-S and S=O in the FT-IR spectrum and the different of peaks
produced in the XRD diffraction pattern proved that the
reaction occurred in the starch structure. Thermal properties
were also determined using differential scanning calorimetry (DSC)
and termogravimetry analysis (TGA). Sodium starch sulfate produced
has a good thermal stability because of the decomposition temperature
of 265oC. Sodium starch sulfate is suitable as an additive in
the production of heat resistance hydrogel, organogel and film
with anionic properties because degradation does not occur below
this temperature.
Keywords: Dioscorea pentaphylla; sodium starch sulfate; sulphation
RUJUKAN
Agarwal, H.K., Kumar, A., Doncel, G.F. & Parang, K. 2010. Synthesis,
antiviral and contraceptive activities of nucleoside-sodium cellulose
sulfate acetate and succinate conjugates. Bioorganic &
Medicinal Chemistry Letters 20: 6993-6997.
Airul, A., Yusof, S.M., Jamil, M.S., Abdullah, A., Yusoff, S.F.M.,
Arip, M.N.M. & Lazim, A.M. 2014. Physicochemical characterization
of starch extracted from Malaysian wild yam (Dioscorea hispida
Dennst.). Emirates Journal of Food Agriculture 26(8):
652-658.
Arueya, G.L. & Oyewale, T.M. 2015. Effect of varying degrees
of succinylation on the functional and morphological properties
of starch from acha (Digitaria exilis Kippis Stapf). Food
Chemistry 177: 258-266.
Burkill, I.H. 1966. A Dictionary of the Economic Products of the
Malay Peninsula. Kuala Lumpur, Malaysia, Government of Malaysia
and Singapore. I (A-H).
Chen, G., Zhang, B., Zhao, J. & Chen, H. 2013. Improved process
for the production of cellulose sulfate using sulfuric acid/ethanol
solution. Carbohydrate Polymers 95: 332-337.
Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D., Song, C., Zhang, W. &
Wang, P. 2008. Effect of acetylation on properties of corn starch.
Food Chemistry 106: 923-928.
Chowdary, K.P.R., Enturi, V. & Rani, A.S. 2011. Preparation and
evaluation of starch phosphate - A new modified starch as a disintegrant
in tablet formulations. International Journal of Chemical Sciences
9(2): 889-899.
Christensen, N.D., Reed, C.A., Culp, T.D., Hermonat, P.L., Howett,
M.K. & Anderson, R.A. 2001. Papillomavirus microbial activities
of high molecular weight cellulose sulfate, dextran sulfate and
polystyrene sulfonate. Antimicrobial Agents and Chemotherapy
45: 3427-3432.
Cui, D., Liu, M., Zhang, B., Gong, H. & Bi, Y. 2011. Optimization
of reaction conditions for potato starch sulphate and its chemical
and structural characterization. Starch/Starke 63: 354-363.
Cui, D., Liu, M., Wu, L. & Bi, Y. 2009. Synthesis of potato starch
sulfate and optimization of the reaction condition. International
Journal of Biological Macromolecules 44: 294-299.
Dzulkefly, K.K.D., Koon, S.Y., Kassim, A., Sharif, A. & Abdullah,
A.H. 2007. Chemical modification of sago starch by solventless
esterification with fatty acid chlorides. The Malaysian Journal
of Analytical Sciences 11(2): 395-399.
Elmi Sharlina, M.S., Yaacob, W.A., Azwan, M.L., Shazrul, F., Lim,
S.J., Sapina, A., Akram, N. & Malina, K. 2017. Physicochemical
properties of starch from Dioscorea pyrifolia tubers. Food
Chemistry 220: 225-232.
Gericke, M., Liebert, T. & Heinze, T. 2009. Interaction of ionic
liquids with polysaccarides, 8-synthesis of cellulose sulfates
suitable for polyelectrolyte complex formation. Macromolecular
Bioscience 9(4): 343-353.
Gohdes, M. & Mischnick, P. 1998. Determination of the substitution
pattern in the polymer chain of cellulose sulfates. Carbohydrate
Research 309: 109-115.
Katsuraya, K., Shibuya, T., Inazawa, K. & Nakashima, H. 1995.
Synthesis of sulfated alkyl malto-oligosaccharides with potent
inhibitory effects on AIDS virus infection. Macromolecules
28: 6697-6700.
Liu, G.G.,
Borjihan, G., Baigude, H., Nakasima, H. & Uryu, T. 2003. Synthesis
and anti-HIV activity of sulfated astragalus polysaccharide. Polymer
for Advanced Technologies 14(7): 471-476.
Liu, X., Yu, L., Xie,
F., Li, M., Chen, L. & Li, X. 2010. Kinetics and mechanisme
of thermal decomposition of corn starches with different amylose/amylopectin
ratios. Starch/Starke 62: 139-146.
Londono-Restrepo, S.M.,
Rincon-Londono, N., Contreras- Padilla, M., Acosta-Osorio, A.,
Bello-Perez, L.A., Lucas- Aguirre, J.C., Quintero, O.V., Pineda-Gomez,
P., Real-Lopez, A. & Rodriguez-Garcia, M.E. 2014. Physicochemical,
morphological and rheological characterization of Xanthosoma
robustum lego-like starch. International Journal of Biological
Macromolecules 65: 222-228.
Regina, S.A.S., Wan Yaacob,
W.A., Shazrul, F., Nurul, I.H. & Azwan, M.L. 2016. Transformation
of crystalline starch nanoparticles into highly luminescent carbon
nanodots: Toxicity studies and their application. Carbohydrate
Polymers 137: 488-496.
Singh, V. & Tiwari,
A. 2008. Microwave-accelerated methylation of starch. Carbohydrate
Research 343: 151-154.
Sparrow, D.B., Pa., M.,
Powers, W.R., Grove, P. & Pa., C. 1958. Method of Making
Sodium Cellulose Sulfate. US Patent No. 2 862 922.
Usher, G. 1974. A
Dictionary of Plants Used by Man. London: Constable and Company
Ltd.
Wang, Y., Gao, W. &
Li, X. 2009. Carboxymethyl Chinese yam starch: Syntesis, characterisation
and influence of reaction parameters. Carbohydrate Research
344: 1764-1769.
Wang, Z.M., Li, L., Zheng,
B.S., Normakhamatov, N. & Guo, S.Y. 2007. Preparation and
anticoagulation activity of sodium cellulose sulfate. International
Journal of Biological Macromolecules 41: 376-382.
Whistler, R.L. 1970.
Process of Preparing Cellulose Sulfate and Starch Sulfate.
US Patent No. 3 507 655.
Xie, Y.L., Wang, M.J.
& Yao, S.J. 2009. Preparation and characterization of biocompatible
microcapsules of sodium cellulose sulfate/chitosan by means of
layer-by-layer self-assembly. Langmuir 25(16): 8999-9005.
Yao, S. 2000. An improved
process for the preparation of sodium cellulose sulphate. Chemical
Engineering Journal 78: 199-204.
Yang, K.X., Ling, X.Q.
& Qu, T.Z. 1988. Influences of external salt on the solution
viscosity of sodium-cellulose sulfate half-ester. Acta Physico-Chimica
Sinica 4(5): 523-526.
Zhang, K., Brendler,
E., Geissler, A. & Fischer, S. 2011a. Synthesis and spectroscopic
analysis of cellulose sulfates with regulable total degrees of
substitution and sulfation pattern 13C NMR and FT Raman Spectroscopy.
Polymer 52: 26-32.
Zhang, K., Peschel, D.,
Baucker, E., Groth, T. & Fischer, S. 2011b. Synthesis and
characterisation of cellulose sulfates regarding the degrees of
substitution, degree of polymerisation and morphology. Carbohydrate
Polymers 83: 1659-1664.
Zhu, L.Y., Lin, D.Q.
& Yao, S.J. 2010. Biodegradation of polyelectrolyte complex
films composed of chitosan and sodium cellulose sulfate as the
controllable release carrier. Carbohydrate Polymers 82:
323-328.
Zou, C., Du, Y.M., Li,
Y. & Yang, J.H. 2008. Preparation of lacquer polysaccharide
sulfates and their antioxidant activity in vitro. Carbohydrate
Polymers 73: 322-331.
*Pengarang
untuk surat-menyurat; email: wanyaa@ukm.edu.my