Sains Malaysiana 46(9)(2017): 1603–1609
http://dx.doi.org/10.17576/jsm-2017-4609-32
The Effect of Tocotrienol-Rich Fraction on Oxidative Liver
Damage Induced by Fenitrothion
(Kesan Fraksi Kaya Tokotrienol ke atas Kerosakan Oksidatif
Hepar Diaruh Fenitrotion)
PUTRI
AYU
JAYUSMAN,
SITI
BALKIS
BUDIN*,
IZATUS
SHIMA
TAIB
& AHMAD
ROHI
GHAZALI
Programme
of Biomedical Science, School of Diagnostic and Applied Health
Sciences
Faculty
of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja
Muda Abdul Aziz
50300
Kuala Lumpur, Federal Territory, Malaysia
Diserahkan:
24 Mac 2016/ Diterima: 6 Julai 2017
ABSTRACT
Exposure to organophosphate
pesticide including fenitrothion (FNT)
has led to many adverse effects on human health. However, a
potent antioxidant like palm oil tocotrienol-rich fraction (TRF) can reduce oxidative damage
in various pathological conditions, could also reduce the adverse
effects by FNT. The aim of this study was to evaluate the effect of
TRF
on oxidative liver damage in FNT induce hepatotoxicity in experimental
rats. A total of 40 male Sprague-Dawley rats were randomly divided
into four groups of 10, namely control, TRF, FNT and
TRF+FNT
group. TRF
(200 mg/kg body weight) and FNT (20
m/kg body weight) were administered through oral gavage for
28 days. Corn oil which served as vehicle was given orally to
the control group. At the end of the study period, liver and
blood was taken for oxidative damage and biochemical evaluation
and histological observation. TRF supplementation prevents oxidative
liver damage by reducing the hepatic malondialdehyde (MDA)
and protein carbonyl (PCO) level significantly. Besides, TRF
also restored the endogenous antioxidants particularly
reduced glutathione (GSH),
glutathione peroxidase (GPx) and ferric reducing/antioxidant
power (FRAP). TRF also prevent liver damage
by reducing the liver enzymes, alanine aminotransferase (ALT)
and aspartate aminotransferase (AST). The attenuation of liver
damage by TRF was also showed histologically. In conclusion, TRF
supplementation showed a potential in preventing
oxidative liver damage in FNT-treated
rats by reducing the oxidative damage and improving the antioxidant
status.
Keywords: Antioxidant;
oxidative stress; palm oil; vitamin E
ABSTRAK
Pendedahan kepada organofosfat
termasuk fenitrotion (FNT) telah menyebabkan kesan sampingan
pada kesihatan manusia. Walau bagaimanapun, antioksidan yang
poten seperti fraksi kaya tokotrienol minyak sawit (TRF)
berupaya untuk mengurangkan kerosakan oksidatif yang mungkin
juga berupaya untuk mengurangkan kesan kerosakan FNT. Kajian ini dilakukan untuk
menilai kesan TRF ke atas hepatotoksiti tikus aruhan FNT.
Sebanyak 40 ekor tikus jantan Sprague-dawley dibahagikan secara
rawak kepada empat kumpulan, sepuluh ekor setiap satu iaitu
kumpulan kawalan, TRF,
FNT
dan TRF+FNT.
TRF
(200 mg/kg bb) dan FNT (20 mg/kg bb) diberikan secara oral paksa selama 28
hari. Minyak jagung yang merupakan pengangkut telah diberikan
secara oral kepada kumpulan kawalan. Pada akhir kajian, hepar
dan darah diambil untuk menilai kerosakan oksidatif dan status
biokimia serta pemerhatian histologi. Suplementasi TRF melindungi hepar daripada mengalami kerosakan oksidatif
dengan menurunkan aras malondialdehid (MDA)
dan protein karbonil (PCO) hepar secara signifikan. Tambahan
pula, TRF juga mengembalikan aras antioksidan endogenus terutamanya
glutation terturun (GSH), glutation peroksidase (GPx)
dan pengurangan ferik /kuasa antioksida (FRAP). TRF juga
berupaya melindungi hepar daripada mengalami kerosakan dengan
merendahkan aras enzim hepar, alanine aminotransferae (ALT) dan aspartate aminotransferase
(AST). Pengurangan kerosakan hepar tikus
kumpulan TRF+FNT juga
telah diperhatikan secara histologi. Kesimpulannya, suplementasi
TRF
berpotensi memberikan kesan perlindungan pada
hepar tikus aruhan FNT dengan
mengurangkan kerosakan oksidatif dan meningkatkan status antioksidan.
Keywords: Antioksida;
minyak sawit; tekanan oksidatif; vitamin E
RUJUKAN
Abdollahi,
M., Ranjbar, A., Shadnia, S., Nikfar, S. & Rezaie, A. 2004.
Pesticides and oxidative stress: A review. Med. Sci. Monit.
10(6): RA141-147.
Aebi,
H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126.
Aggarwal,
B.B., Sundaram, C., Prasad, S. & Kannappan, R. 2010. Tocotrienols,
the vitamin E of the 21st century: Its potential against cancer
and other chronic diseases. Biochem. Pharmacol. 80(11):
1613 - 1631.
Al-Attar,
A.M. 2010. Physiological and histopathological investigations
on the effects of α- lipoic acid in rats exposed to malathion.
J. Biomed. Biotechnol. 2010: Article ID 203503. DOI.
10.1155/2010/203503.
Anderson,
N. & Borlak, J. 2007. Mechanisms of toxic liver injury.
In Hepatotoxicity. From Genomics to in vitro and in vivo
Models, edited by Sahu, S.C. New York: John Wiley &
Sons Ltd. pp. 191-286.
Benzie,
I.F.F. & Strain, J.J. 1999. Ferric reducing/antioxidant
power assay: Direct measure of total antioxidant activity of
biological fluids and modified version for simultaneous measurement
of total antioxidant power and ascorbic acid concentration.
Methods in Enzymology 299: 15-27.
Beyer,
J. & Fridovich, I. 1987. Assaying for superoxide dismutase
activity: Some large consequences of minor changes in conditions.
Anal. Biochem. 161(2): 559-566.
Bhatti,
G.K., Kiran, R. & Sandhir, R. 2010. Modulation of ethion-induced
hepatotoxicity and oxidative stress by vitamin E supplementation
in male wistar rats. Pestic. Biochem. Phys. 98: 26-32.
Budin,
S.B., Othman, F., Louis, S.R., Bakar, M.A., Das, S. & Mohamed,
J. 2009. The effects of palm oil tocotrienol rich fraction supplementation
on biochemical parameters, oxidative stress and the vascular
wall of streptozotocin-induced diabetic rats. Clinics 64(3):
235-244.
Budin,
S.B., Han, C.M., Jayusman, P.A. & Taib, I.S. 2012. Tocotrienol
rich fraction prevents fenitrothion induced pancreatic damage
by restoring antioxidant status. Pak. J. Biol. Sci. 15(11):
517-523.
Das,
B. & Mukherjee, S. 2000. Chronic toxic effects of quinalphos
on some biochemical parameters in Labeo Rohita (Ham.).
Toxicol. Lett. 114(1): 11-18.
Dirican,
E.K. & Kalender, Y. 2012. Dichlorvos-induced testicular
toxicity in male rats and the protective role of vitamins C
and E. Experimental and Toxicologic Pathology 64(7):
821-830.
Elhalwagy,
M.E.A., Darwish, N.S. & Zaher, E.M. 2008. Prophylactic effect
of green tea polyphenols against liver and kidney injury induced
by fenitrothion insecticide. Pestic. Biochem. Phys. 91:
81-89.
Ellman,
G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys.
82(1): 70-77.
ElMazoudy,
R.H., Attia, A.A. & AbdElGawad, H.S. 2011. Evaluation of
developmental toxicity induced by anticholinesterase insecticide,
diazinon in female rats. Development and Reproductive Toxicology
92: 534-542.
Habig,
W.H., Pabst, M.J. & Jakoby, W.B. 1974. Glutathione S-transferases
the first enzymatic step in mercapturic acid formation. J.
Biol. Chem. 249(22): 7130-7139.
Hazarika,
A., Sarkar, S.N., Hajare, S., Kataria, M. & Malik, J.K.
2003. Influence of malathion pretreatment on the toxicity of
anilofos in male rats: A biochemical interaction study. Toxicology
185: 1-8.
Hernández,
A.F., Parrón, T., Tsatsakis, A.M., Requena, M., Alarcón, R.
& López-Guarnido, O. 2013. Toxic effects of pesticide mixtures
at a molecular level: Their relevance to human health. Toxicology
307: 136-145.
Jaeschke,
H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., Pessayre, D.
& Lemasters, J.J. 2002. Mechanisms of hepatotoxicity. Toxicol.
Sci. 65(2): 166-176.
Jayusman,
P.A., Budin, S.B., Ghazali, A.R., Taib, I.S. & Louis, S.R.
2014. Effects of palm oil tocotrienol-rich fraction on biochemical
and morphological alterations of liver in fenitrothion-treated
rats. Pakistan Journal of Pharmaceutical Sciences 27(6):
1873-1880.
Kamal-Eldin,
A. & Appelqvist, L-Å. 1996. The chemistry and antioxidant
properties of tocopherols and tocotrienols. Lipids 31(7):
671-701.
Kozawa,
K., Aoyama, Y., Mashimo, S. & Kimura, H. 2009. Toxicity
and actual regulation of organophosphate pesticides. Toxin
Reviews 28(4): 245-254.
Lawrence,
R.A. & Burk, R.F. 1976. Glutathione peroxidase activity
in selenium-deficient rat liver. Biochem. Bioph. Res. Co.
71(4): 952-958.
Levine,
R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz,
A-G., Ahn, B-W., Shaltiel, S. & Stadtman, E.R. 1990. Determination
of carbonyl content in oxidatively modified proteins. Methods
Enzymol. 186: 464-478.
Lukaszewicz-Hussain,
A. 2010. Role of oxidative stress in organophosphate insecticide
toxicity - Short review. Pest. Biochem. Physiol. 98:
145-150.
Meaklim,
J., Yang, J., Drummer, O.H., Killalea, S., Staikos, V., Horomidis,
S., Rutherford, D., Ioannides-Demos, L.L., Lim, S. & Mclean,
A.J. 2003. Fenitrothion: Toxicokinetics and toxicologic evaluation
in human volunteers. Environmental Health Perspectives 111(3):
305-308.
Packer,
L., Weber, S.U. & Rimbach, G. 2001. Molecular aspects of
α-tocotrienol antioxidant action and cell signalling. J.
Nutr. 131(2): 369S-373S.
Qureshi,
A.A., Qureshi, N., Wright, J.J., Shen, Z., Kramer, G., Gapor,
A., Chong, Y.H., DeWitt, G., Ong, A. & Peterson, D.M. 1991.
Lowering of serum cholesterol in hypercholesterolemic humans
by tocotrienols (palmvitee). Am. J. Clin. Nutr. 53(4
Suppl): 1021S-1026S.
Saafi,
E.B., Louedi, M., Abdelfattah, E., Zakhama, A., Najjar, M.F.,
Hammamia, M. & Achour, L. 2011. Protective effect of date
palm fruit extract (Phoenix dactylifera L.) on dimethoate
induced-oxidative stress in rat liver. Exp. Toxicol. Pathol.
63: 433-441.
Stocks,
J. & Dormandy, T. 1971. The autoxidation of human red cell
lipids induced by hydrogen peroxide. Brit. J. Haematol.
20(1): 95-111.
Suzuki,
Y.J., Tsuchiya, M., Wassall, S.R., Choo, Y.M., Govil, G., Kagan,
V.E. & Packer, L. 1993. Structural and dynamic membrane
properties of α-tocopherol and α-tocotrienol: Implication
to the molecular mechanism of their antioxidant potency. Biochem.
32(40): 10692-10699.
Taib,
I.S., Budin, S.B., Ghazali, A.R., Jayusman, P.A., Louis, S.R.
& Mohamed, J. 2013. Fenitrothion induced oxidative stress and morphological
alterations of sperm and testes in male sprague-dawley rats.
Clinics 68(1): 93-100.
Tiwari,
V., Kuhad, A., Bishnoi, M. & Chopra, K. 2009. Chronic treatment
with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular
streptozotocin-induced cognitive impairment and oxidative-nitrosative
stress in rats. Pharmacol. Biochem. Be. 93(2): 183-189.
Tuzmen,
N., Candan, N., Kaya, E. & Demiryas, N. 2008. Biochemical
effects of chlorpyrifos and deltamethrin on altered antioxidative
defense mechanisms and lipid peroxidation in rat liver. Cell
Biochemistry and Function 26(1): 119-124.
Verma,
R.S., Mehta, A. & Srivastava, N. 2007. In vivo chlorpyrifos
induced oxidative stress: Attenuation by antioxidant vitamins.
Pestic. Biochem. Phys. 88(2): 191-196.
WHO.
2010. The WHO Recommended Classification of Pesticides by
Hazard and Guidelines to Classification 2009. Geneva: World
Health Organization.
*Pengarang untuk surat-menyurat;
email: balkis@ukm.edu.my