Sains Malaysiana 46(9)(2017): 1667–1674
http://dx.doi.org/10.17576/jsm-2017-4609-40
Unsteady Flow of a Nanofluid Past a Permeable Shrinking Cylinder
using Buongiorno’s Model
(Aliran Tak Mantap Nanobendalir melalui Silinder Telap Mengecut
menggunakan model Buongiorno)
KHAIRY
ZAIMI1*,
ANUAR
ISHAK2
& IOAN POP3
1Institute of Engineering Mathematics,
Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan,
Malaysia
2Pusat Pengajian Sains Matematik,
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600
UKM
Bangi, Selangor Darul Ehsan, Malaysia
3Department
of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca,
Romania
Diserahkan:
28 Jun 2016/Diterima: 18 April 2017
ABSTRACT
The unsteady laminar
boundary layer flow of a nanofluid and heat transfer over a permeable
shrinking cylinder using the Buongiorno’s nanofluid model is investigated.
Using a similarity transformation, the governing partial differential
equations are transformed into a system of ordinary differential
equations and then solved numerically using a shooting method.
The numerical results are obtained for velocity, temperature and
concentration profiles as well as the skin friction coefficient,
the local Nusselt number and the local Sherwood number. Dual solutions
are found to exist in a certain range of the suction and unsteadiness
parameters. It is observed that suction parameter increase both
the skin friction coefficient and the heat transfer rate at the
surface, whereas the opposite trend is obtained for the Sherwood
number. It is also observed that suction widens the range of the
unsteadiness parameter for which the solution exists.
Keywords: Nanofluids;
shrinking cylinder; suction; unsteady flow
ABSTRAK
Aliran lapisan sempadan
lamina tak mantap nanobendalir dan pemindahan haba terhadap silinder
telap mengecut menggunakan model nanobendalir Buongiorno dikaji.
Menggunakan penjelmaan keserupaan, persamaan menakluk dalam bentuk
persamaan pembezaan separa dijelmakan kepada persamaan pembezaan
biasa dan diselesaikan secara berangka menggunakan kaedah tembakan.
Keputusan berangka diperoleh bagi profil-profil halaju, suhu dan
pecahan isi padu nanozarah serta pekali geseran kulit, nombor
Nusselt setempat dan nombor Sherwood setempat. Penyelesaian dual
didapati wujud bagi julat-julat tertentu parameter sedutan dan
parameter ketakmantapan. Didapati parameter sedutan meningkatkan
pekali geseran kulit dan kadar pemindahan haba pada permukaan,
manakala telatah bertentangan diperoleh bagi nombor Sherwood.
Didapati juga sedutan meluaskan julat parameter ketakmantapan
yang penyelesaian wujud.
Kata kunci: Aliran tak mantap; nanobendalir; sedutan; silinder mengecut
RUJUKAN
Bejan, A. 2013. Convection Heat Transfer. 4th ed. New York:
Wiley.
Buongiorno, J. 2006. Convective transport in nanofluids. ASME
Journal of Heat Transfer 128: 240-250.
Choi, S.U.S. 1995. Enhancing thermal conductivity of fluids with
nanoparticles. In Developments and Application of Non- Newtonian
Flows FED-vol. 231/MD 66: 99-105.
Das, S.K., Choi, S.U.S., Yu, W. & Pradeep, T. 2007. Nanofluids:
Science and Technology. New Jersey: Wiley-Interscience.
Dhanai, R., Rana, P. & Kumar, L. 2016. MHD mixed convection nanofluid
flow and heat transfer over an inclined cylinder due to velocity
and thermal slip effects: Buongiorno’s model. Powder Technology
288: 140-150.
Duangthongsuk, W. & Wongwises, S. 2008. Effect of thermophysical
properties models on the predicting of the convective heat transfer
coefficient for low concentration nanofluid. International
Communications in Heat and Mass Transfer 35: 1320-1326.
Fang, T., Zhang, J., Zhong, Y. & Tao, H. 2011. Unsteady viscous
flow over an expanding stretching cylinder. Chinese Physics
Letters 28. Article ID. 124707.
Fang, T., Zhang, J. & Zhong, Y. 2012. Note on unsteady viscous
flow on the outside of an expanding or contracting cylinder. Communications
in Nonlinear Science and Numerical Simulation 17: 3124-3128.
Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary
layer flow near the stagnation point on a vertical surface in
a porous medium: Brinkman model with slip. Transport in Porous
Media 77: 267-285.
Ishak, A., Nazar, R. & Pop, I. 2008a. Uniform suction/blowing
effect on flow and heat transfer due to a stretching cylinder.
Applied Mathematical Modelling 32: 2059-2066.
Ishak, A., Nazar, R. & Pop, I. 2008b. Magnetohydrodynamic (MHD)
flow and heat transfer due to a stretching cylinder. Energy,
Conversion and Management 49: 3265-3269.
Kakac, S. & Pramuanjaroenkij, A. 2009. Review of convective heat
transfer enhancement with nanofluids. International Journal
of Heat and Mass Transfer 52: 3187-3196.
Jaluria, Y. & Torrance, K.E. 2003. Computational Heat Transfer.
2nd ed. New York: Taylor & Francis.
Kuznetsov, A.V. & Nield, D.A. 2010. Natural convective boundary-layer
flow of a nanofluid past a vertical plate. International Journal
of Thermal Sciences 49: 243-247.
Merkin, J.H. 1985. On dual solutions occurring in mixed convection
in a porous medium. Journal of Engineering Mathematics 20:
171-179.
Mohamed, M.K.A., Noar, N.A.Z.M., Salleh, M.Z. & Ishak, A. 2016.
Free convection boundary layer flow on a horizontal circular cylinder
in a nanofluid with viscous dissipation. Sains Malaysiana 45(2):
289-296.
Mukhopadhyay, S. 2012. Mixed convection boundary layer flow along
a stretching cylinder in porous medium. Journal of Petroleum
Science and Engineering 96-97: 73-78.
Paullet, J. & Weidman, P.D. 2007. Analysis of stagnation point
flow towards a stretching sheet. International Journal of Nonlinear
Mechanics 42: 1084-1091.
Postelnicu, A. & Pop, I. 2011. Falkner-Skan boundary layer flow
of a power-law fluid past a stretching wedge. Applied Mathematics
and Computation 217: 4359-4368.
Rosca, A.V. & Pop, I. 2013. Flow and heat transfer over a vertical
permeable stretching/shrinking sheet with a second order slip.
International Journal of Heat and Mass Transfer 60: 355-364.
Simal, S., Rosselló, C., Berna, A. & Mulet, A. 1998. Drying of
shrinking cylinder-shaped bodies. Journal of Food Engineering
37: 423-435.
Trisaksri, V. & Wongwises, S. 2007. Critical review of heat transfer
characteristics of nanofluids. Renewable, Sustainable Energy
Review 11: 512-523.
Wan Zaimi, W.M.K.A., Ishak, A. & Pop, I. 2013. Unsteady viscous
flow over a shrinking cylinder. Journal of the King Saud University-Science
25: 143-148.
Wang, C.Y. 1988. Fluid flow due to a stretching cylinder. Physics
of Fluids 31: 466-468.
Wang, C.Y. & Ng, C. 2011. Slip flow due to a stretching cylinder.
International Journal of Non-Linear Mechanics 46: 1191-
1194.
Wang, C.Y. 2012. Natural convection on a vertical stretching cylinder.
Communications in Nonlinear Science and Numerical Simulation
17: 1098-1103.
Wang, X.Q. & Mujumdar, A.S. 2008. A review on nanofluids - Part
I: Theoretical and numerical investigations. Brazilian Journal
of Chemical Engineering 25: 613-630.
Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The effect
of transpiration on selfsimilar boundary layer flow over moving
surfaces. International Journal of Engineering Science 44:
730-737.
*Pengarang untuk surat-menyurat;
email: khairy@unimap.edu.my