Sains Malaysiana 47(10)(2018):
2481–2489
http://dx.doi.org/10.17576/jsm-2018-4710-25
Evaluation of Finger
Photoplethysmography Fitness Index on Young Women with Cardiovascular
Disease Risk Factors
(Penilaian
Kesihatan Fotopletismografi
Jari Telunjuk
Wanita Muda dengan Risiko Faktor Penyakit
Kardiovaskular)
MUSILAWATI MUHAJIR1,2, AMILIA AMINUDDIN1*,
AZIZAH
UGUSMAN1,
NORIZAM
SALAMT1,
ZANARIYAH
ASMAWI1,
AINI
FARZANA
ZULKEFLI1,
MUHAMMAD
FIRDAUS
AZMI1,
KALAIVANI
CHELLAPPAN3
& NOR ANITA MEGAT
MOHD
NORDIN1
1Department of Physiology, Universiti Kebangsaan Malaysia Medical
Center, Jalan Yaacob
Latiff, Bandar Tun
Razak, 56000 Cheras, Kuala Lumpur,
Federal Territory, Malaysia
2Department of Pathology, Universiti Kebangsaan Malaysia Medical
Center, Jalan Yaacob
Latiff, Bandar Tun
Razak, 56000 Cheras, Kuala Lumpur,
Federal Territory, Malaysia
3Faculty of Engineering, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 17 Mac 2018/Diterima: 20 Jun 2018
ABSTRACT
The use of photoplethysmography (PPG)
as one of cardiovascular disease (CVD) marker has got more attention
due to its simplicity, noninvasive and portable characteristics.
Two new markers had been developed from PPG namely PPG fitness
index (PPGF) and vascular risk prediction index (VPRI).
The aim of the present study was to compare PPGF level
between young women with and without CVD risk factors, to investigate
the relationship between PPGF with other CVD markers
and to assess the sensitivity of VRPI in classifying young women
that have CVD risk factors. A total of 148 young women aged 20-40
years old with and without CVD risk factors were involved in this
study. CVD risk factors comprised of abdominal obesity, hypertension,
dyslipidemia, smoking and family history
of premature CVD. Subjects were categorized into healthy or having CVD
risk factor. Measurements taken were anthropometric
data, blood pressure, lipid profile, pulse wave velocity (PWV), augmentation index (AIx), high sensitivity C-Reactive
Protein (hs-CRP),
PPGF
and VRPI. SPSS version
20 was used for data analysis with p<0.05
as significant value. The mean subjects’ age was 29.97±5.27 years
old. There was no difference in PPGF level between groups (p>0.05).
PPGF
was independently determined by PWV (β=-
0.31, p<0.001) and height (β=0.16, p=0.04).
VRPI
had 77.9% sensitivity in identifying subjects with
CVD
risk factor. In conclusion, PPGF correlates with PWV and
has potential to be an indicator of aortic stiffness while VRPI is
sensitive to classify those with CVD risk factor.
Keywords: Cardiovascular
disease; photoplethysmography; pulse
wave velocity; women
ABSTRAK
Penggunaan fotopletismografi (PPG)
sebagai salah satu
penanda penyakit
kardiovaskuar (CVD) semakin
mendapat perhatian
kerana ciri-cirinya yang ringkas, tidak invasif dan mudah
alih. Dua penanda telah dibangunkan
daripada PPG yang dinamakan
indeks kecergasan
PPG
(PPGF)
dan indeks
jangkaan risiko saluran darah (VPRI).
Tujuan kajian
ini adalah untuk
membandingkan tahap
PPGF
antara wanita
muda yang sihat
dan yang mempunyai faktor risiko CVD,
menentukan hubungan antara PPGF dengan
lain-lain penanda CVD dan menilai kesensitifan VRPI
dalam mengenal
pasti wanita
muda yang mempunyai faktor risiko CVD.
Seramai 148 orang
wanita muda
dengan julat umur
20-40 tahun yang sihat
atau yang mempunyai faktor risiko CVD telah terlibat dalam kajian ini.
Faktor
risiko CVD adalah
obesiti abdomen, hipertensi, dislipidemia, merokok dan sejarah keluarga
dengan CVD pramatang.
Subjek
dikategorikan kepada kumpulan sihat atau mempunyai faktor risiko CVD.
Pengukuran yang diambil
ialah data antropometrik, tekanan darah, profil lipid, halaju gelombang nadi (PWV),
indeks augmentasi
(AIx), Protein C-Reaktif
berkesensitifan tinggi (hs-CRP), PPGF dan VRPI. SPSS versi 20 telah digunakan untuk menganalisis data dengan p<0.05 sebagai had signifikan. Purata umur subjek ialah 29.97±5.27 tahun. Tiada perbezaan yang signifikan pada PPGF antara
kumpulan (p>0.05).
PPGF
ditentukan secara
bebas oleh
PWV (Beta=-0.31,
p<0.001) dan tinggi
(Beta=0.16, p=0.04). VRPI mempunyai 77.9% kesensitifan dalam mengenal pasti subjek yang mempunyai faktor risiko CVD. Kesimpulannya, PPGF mempunyai hubungan dengan PWV dan mempunyai potensi sebagai indikator kekerasan aorta manakala VRPI
adalah sensitif
dalam mengesan
faktor risiko CVD.
Kata kunci: Fotopletismografi;
halaju gelombang
nadi; penyakit kardiovaskular; wanita
RUJUKAN
Allen, J. 2007. Photoplethysmography and its application in clinical physiological measurement.
Physiological Measurement 28: R1-R39.
Al-Naamani,
N., Chirinos, J.A., Zamani,
P., Ruthazer, R., Paulus, J.K., Roberts,
K.E., Barr, R.G., Lima, J.A., Bluemke,
D.A., Kronmal, R. & Kawut,
S.M. 2016. Association of systemic arterial properties with right
ventricular morphology: The multi-ethnic study of atherosclerosis
(MESA)-right ventricle study. Journal of the American Heart
Association 5(12): 11. doi:10.1161/jaha.116.004162[17.10.2016].
Aminuddin, A.,
Zaiton, Z., Chellappan,
K., Azizah, U., Norizam,
S. & Anita, N.M. 2016.
The assessment of finger photoplethysmography
fitness index (PPGF) among young men with cardiovascular disease
risk factors: A cross sectional study. Medicine and Health-Kuala
Lumpur 11(2): 218-231.
Aminuddin, A.,
Chellappan, K., Maskon,
O., Zakaria, Z., Karim, A.A., Ngah,
W.Z. & Nordin, N.A.M. 2014. Augmentation index is a better
marker for cardiovascular risk in young Malaysian males. A
comparison of involvement of pulse wave velocity, augmentation
index, and C-reactive protein. Saudi Medical Journal
35(2): 138-146.
Aminuddin, A., Zakaria, Z., Fuad, A.F., Kamsiah, J., Othman,
F., Das, S., Kamisah, Y., Qodriyah,
H.S., Jubri, Z., Nordin,
N.A.M. & Ngah, W.Z. 2013. High C
reactive protein associated with increased pulse wave velocity
among urban men with metabolic syndrome in Malaysia. Saudi
Medical Journal 34(3): 266-275.
Arnold,
N., Gori, T., Schnabel, R.B., Schulz, A., Prochaska, J.H., Zeller,
T., Binder, H., Pfeiffer, N., Beutel,
M., Espinola-Klein, C. & Lackner,
K.J. 2017. Relation
between arterial stiffness and markers of inflammation and hemostasis-data
from the population-based Gutenberg Health Study. Scientific
Reports (7)10: 6346. doi:10.1038/s41598-017-06175-2.
Balci, H.,
Demirkok, S.S., Yildiz,
M., Metin, G., Hacibekiroglu,
M. & Simsek, G. 2010. The
relationship between the inflammatory markers and arterial distensibility
in patients with sarcoidosis. Medical Journal of Trakya
University 27(1): 44-50.
Bell,
K., Twiggs, J. & Olin, B.R. 2015. Hypertension: The Silent Killer:
Updated JNC-8 Guideline Recommendations. United
State. Alabama Pharmacy Association.
Borhanuddin, B., Ahmad, N., Shah,
S.A., Murad, N.A.A., Zakaria, S.Z.S.,
Kamaruddin, M.A., Jalal, N.A., Yusuf, N.A.M., Patah, A.E.A., Dauni, A., Sallam, W.A.F.W. & Jamal, R. 2018. Association of job
sectors with type 2 diabetes mellitus, hypercholesterolemia and
obesity: A cross-sectional study from the Malaysian Cohort (TMC)
project. International Health. 9. doi:10.1093/inthealth/ihx075.
Brillante, D.G.,
O’sullivan, A.J. & Howes, L.G. 2008. Arterial
stiffness indices in healthy volunteers using non-invasive digital
photoplethysmography. Blood Pressure 17(2):
116- 123.
Chellappan, K. 2009. Noninvasive vascular risk prediction by photophlethymogram
analysis. Thesis Ph.D. Universiti
Kebangsaan Malaysia (Unpublished).
Chellappan, K.,
Mohd Ali, M.A. & Zahedi, E. 2008. An age index
for vascular system based on photoplethysmogram
pulse contour analysis. In 4th Kuala Lumpur International
Conference on Biomedical Engineering 2008(21): 125-128.
Chellappan, K.,
Zahedi, E. & Ali, M.A.M. 2007. Age-related upper
limb vascular system windkessel model
using photoplethysmography. In 3rd Kuala
Lumpur International Conference on Biomedical Engineering 2006.
Springer, Berlin: Heidelberg. pp. 563-566.
Chin, C.Y. & Pengal, S. 2009. Cardiovascular disease
risk in a semirural community in Malaysia. Asia Pacific
Journal of Public Health 21(4): 410-420.
Chirinos, J.A., Kips, J.G., Jacobs
Jr., D.R., Brumback, L., Duprez,
D.A., Kronmal, R., Bluemke,
D.A., Townsend, R.R., Vermeersch, S.
& Segers, P. 2012. Arterial wave reflections
and incident cardiovascular events and heart failure: MESA (Multiethnic
study of atherosclerosis). Journal of the American College
of Cardiology 60(21): 2170-2177.
DeFilippis, A.P., Blaha, M.J., Ndumele, C.E., Budoff, M.J., Lloyd- Jones, D.M., McClelland, R.L., Lakoski, S.G., Cushman, M., Wong, N.D., Blumenthal, R.S.,
Lima, J. & Nasir, K. 2011. The association of Framingham and
Reynolds risk scores with incidence and progression of coronary
artery calcification in MESA (Multi-ethnic study of atherosclerosis).
Journal of the American College of Cardiology 58(20): 2076-2083.
Elgendi, M. 2012. On the analysis of fingertip photoplethysmogram
signals. Current Cardiology Reviews 8(1): 14-25.
Eng, J. 2003. Sample size
estimation: How many individuals should be studied? Radiology
227(2): 309-313.
Gafor, A.H.A.,
Mohd, R., Cader,
R., Yen, K.W., Mohamad, M., Shah, S.A., Bain, A. & Kong, N.C.
2018. Evaluating
cardiovascular risk in chronic kidney disease patients: A biomarker
approach. Sains Malaysiana
47(1): 149-155.
Gamil, S.S.,
Adam, M.E. & Bakheit, K.H. 2014. Plasma levels of C-reactive
protein a cardiovascular risk factor indicator in Sudanese overweight
and obese adults. Journal of Endocrinology, Diabetes &
Obesity 3(1): 1063.
Gunarathne, A.,
Patel, J.V., Hughes, E.A. & Lip, G.Y. 2008. Measurement of stiffness
index by digital volume pulse analysis technique: Clinical utility
in cardiovascular disease risk stratification. American Journal
of Hypertension 21(8): 866-872.
Gupta,
S., Gudapati, R., Gaurav, K. & Bhise, M. 2013. Emerging risk factors for cardiovascular
diseases: Indian context. Indian Journal of Endocrinology and
Metabolism 17(5): 806-814.
Grabovskis, A.,
Marcinkevics, Z., Lukstina,
Z., Majauska, M., Aivars,
J., Lusa, V. & Kalinina,
A. 2011.
Usability of photoplethysmography
method in estimation of conduit artery stiffness. In European
Conference on Biomedical Optics (p. 80900X). Optical
Society of America.
Hashimoto,
J., Watabe, D., Kimura, A., Takahashi,
H., Ohkubo, T., Totsune, K. & Imai,
Y. 2005. Determinants of the
second derivative of the finger photoplethysmogram
and brachial-ankle pulse-wave velocity: The Ohasama
study. American Journal of Hypertension 18(4): 477-485.
Institute for Public
Health (IPH). 2015. National Health and Morbidity Survey 2015
(NHMS 2015). Vol. II: Non- Communicable Diseases, Risk Factors
& Other Health Problems.2. Kuala Lumpur. Ministry
of Health Malaysia.
Institut Penyelidikan Pembangunan Belia Malaysia.
2011. Indeks
Belia Malaysia 2011.96 https://www.ippbm.gov.my/ dokumen/IBM2011.pdf.
Janner, J.H., Godtfredsen, N.S., Ladelund, S.,
Vestbo, J. & Prescott, E. 2012. The association between
aortic augmentation index and cardiovascular risk factors in a
large unselected population. Journal of Human Hypertension
26(8): 476-484.
Johansen,
N.B., Vistisen, D., Brunner, E.J., Tabák, A.G., Shipley, M.J., Wilkinson, I.B., McEniery, C.M., Roden, M., Herder,
C., Kivimäki, M. & Witte, D.R. 2012. Determinants of aortic
stiffness: 16-year follow-up of the Whitehall II study. PloS
One 7(5). doi.org/10.1371/journal.pone.0037165.
Jones,
S.R., Carley, S. & Harrison, M. 2003. An introduction to power and sample
size estimation. Emergency Medicine Journal 20(5): 453-458.
Kawada, T. &
Otsuka, T. 2013. Factor structure of indices of the second derivative
of the finger photoplethysmogram with
metabolic components and other cardiovascular risk indicators.
Diabetes & Metabolism Journal 37(1): 40-45.
Kuklina, E.V., Yoon, P.W. & Keenan, N.L. 2010.
Prevalence of coronary heart disease risk factors and screening
for high cholesterol levels among young adults, United States,
1999- 2006. The Annals of Family Medicine 8(4): 327-333.
Kuznetsova,
T., Vlierberghe, E.V., Knez,
J., Szczesny, G., Thijs, L., Jozeau,
D., Balestra, C. & Staessen,
J.A. 2014.
Association of digital vascular function with cardiovascular risk
factors: A population study. British Medical Journal 4(3):
1-9. doi:10.1136/bmjopen-2013-004399.
Laurent, S.,
Cockcroft, J., Van Bortel, L., Boutouyrie,
P., Giannattasio, C., Hayoz,
D., Pannier, B., Vlachopoulos, C., Wilkinson,
I. & Struijker-Boudier, H. 2007. Abridged version
of the expert consensus document on arterial stiffness.
Artery Research 1(1): 2-12.
Luo, K.Q., Feng,
X.W., Xu, B.C. & Long, H.B. 2014. Association between arterial
stiffness and risk of coronary artery disease. Pakistan
Journal of Medical Sciences 30(6): 1314-1318.
National Cholesterol
Education Program (NCEP) Expert Panel on Detection, Evaluation
and Treatment of High Blood Cholesterol in Adults (ATP III). 2001. Executive summary of the
Third Report of the National Cholesterol Education Program (NCEP)
expert panel on detection, evaluation, and treatment of high blood
cholesterol in adults (Adult Treatment Panel III). The Journal
of the American Medical Association 285(19): 2486-2497.
Negri, E., La Vecchia,
C., D’Avanzo, B., Nobili, A. & La
Malfa, R.G. 1994. Acute myocardial infarction: Association
with time since stopping smoking in Italy. GISSI-EFRIM
Investigators. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto. Epidemiologia dei Fattori di
Rischio dell’Infarto
Miocardico. Journal of Epidemiology & Community
Health 48(2): 129-133.
Pilt, K., Meigas, K.,
Ferenets, R., Temitski,
K. & Viigimaa, M. 2014. Photoplethysmographic
signal waveform index for detection of increased arterial stiffness.
Physiological Measurement 35(10): 2027-2036.
Pietri, P., Vyssoulis,
G., Vlachopoulos, C., Zervoudaki,
A., Gialernios, T., Aznaouridis,
K. & Stefanadis, C. 2006. Relationship
between low-grade inflammation and arterial stiffness in patients
with essential hypertension. Journal of Hypertension
24(11): 2231-2238.
Ring, M., Eriksson, M.J., Zierath, J.R. & Caidahl, K.
2014. Arterial stiffness estimation in healthy subjects: A validation
of oscillometric (Arteriograph) and
tonometric (SphygmoCor) techniques.
Hypertension Research 37(11): 999-1007.
Rubins, U., Grabovskis,
A., Grube, J. & Kukulis,
I. 2008.
Photoplethysmography analysis of artery properties in patients with cardiovascular diseases.
14th Nordic-Baltic Conference on Biomedical Engineering and
Medical Physics 20: 319-322.
Stone, N.J.,
Bilek, S. & Rosenbaum, S. 2005. Recent national cholesterol education
program adult treatment panel III update: Adjustments and options.
The American Journal of Cardiology 96(4): 53-59.
Shyam, S., Arshad, F., Ghani, R.A., Wahab, N.A., Chinna, K., Safii, N.S., Nisak Y.B. & Kamaruddin, N.A. 2014. Metabolic syndrome, abnormal
glucose tolerance and high sensitivity-C-Reactive protein among
women with a history of gestational diabetes mellitus.
Journal of Diabetes & Metabolism 5(9): 6. doi:
10.4172/2155-6156.1000424.
Tabara, Y., Igase, M.,
Okada, Y., Nagai, T., Miki, T., Ohyagi,
Y., Matsuda, F. & Kohara, K. 2016. Usefulness of the second derivative
of the finger photoplethysmogram for
assessment of end-organ damage: The J-SHIPP study. Hypertension
Research 39(7): 552-556.
Tan, C.E., Ma, S., Wai, D., Chew,
S.K. & Tai, E.S. 2004. Can we apply the national cholesterol
education program adult treatment panel definition of the metabolic
syndrome to Asians? Diabetes Care 27(5): 1182-1186.
Tsai, W.C.,
Chen, J.Y., Wang, M.C., Wu, H.T., Chi, C.K., Chen, Y.K., Chen,
J.H. & Lin, L.J. 2005.
Association of risk factors with increased pulse wave velocity detected
by a novel method using dual-channel photoplethysmography.
American Journal of Hypertension 18(8): 1118-1122.
Usman, S., Reaz, M.I. & Ali, M.M. 2014. Measuring arterial
stiffness using photoplethysmogram.
Acta Scientiarum Technology
36(1): 123-128.
World Health
Organization (WHO). 2017. Cardiovascular diseases (CVDs): Fact sheet. World Health Organization http://www.who.int/mediacentre/factsheets/fs317/en/.
World Health
Organization (WHO). 2014. Noncommunicable Diseases
Country Profiles 2014. Geneva: World Health Organization.
World Health
Organization (WHO). 2011. Global Atlas on Cardiovascular Disease Prevention and Control, edited by Mendis, S.,
Puska, P. & Norrving,
B. France: WHO Press.
Wowern, V.E., Östling,
G., Nilsson, P.M. & Olofsson, P.
2015. Digital photoplethysmography for assessment of arterial stiffness:
Repeatability and comparison with applanation
tonometry. PloS One 10(8):
19. doi:10.1371/journal. pone.0135659.
Yanai, H. 2016. Correlations of arterial
stiffness and augmentation index with metabolic risk factors in
patients with type 2 diabetes. The Journal of Clinical Hypertension
18(6): 593- 594.
Veeranna, V., Pradhan, J., Niraj,
A., Fakhry, H. & Afonso,
L. 2010.
Traditional cardiovascular risk factors and severity of angiographic
coronary artery disease in the elderly. Preventive Cardiology
13(3): 135-140.
*Pengarang
untuk surat-menyurat;
email: amyyra1234@yahoo.com.my