Sains Malaysiana 47(12)(2018): 3031–3041

http://dx.doi.org/10.17576/jsm-2018-4712-13

 

Comparative Analysis of Metabolites and Antioxidant Potentials from Different Plant Parts of Curcuma aeruginosa Roxb.

(Analisis Bandingan Kandungan Metabolit dan Potensi Antioksidan daripada Bahagian Berbeza Curcuma aeruginosa Roxb.)

 

SANIMAH SIMOH*, SEW YUN SHIN, FAZRI ABD RAHIM, MUHAMMAD AIZUDDIN AHMAD & ALIZAH ZAINAL

 

Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 30 Mei 2018 /Diterima: 13 September 2018

 

ABSTRACT

A comparative analysis of metabolites from different parts of Curcuma aeruginosa, i.e. leaves, stems, adventitious roots and rhizomes was performed by GC-MS/MS coupled with multivariate statistical analysis. The GC-MS/MS analysis confirmed the occurrence of 26 metabolites belonged to terpenoids in almost all the samples. The Principal Component Analysis (PCA) indicated that there was a clear distinction between rhizomes and other plant parts, i.e. stems, leaves, and adventitious roots that could be explained by relatively higher contents of terpenoids including curzerene, alpha-farnesen, furanocoumarin, velleral, germacrone cineole, borneol, beta- and gamma- elemene and methenolone. The results of Hierarchical Clustering Analyses (HCA) corresponded with the PCA results where many terpenoids found abundantly high in rhizome were clustered together. This was supported by the Pearson correlation analysis that showed a significantly good relationship between those terpenoids. The adventitious roots demonstrated the strongest antioxidant activity as compared to the other plant parts which could be attributed to its highest Total Phenolic Contents (TPC). Total phenolic contents of all the plant parts were positively correlated with their antioxidant activities which indicate that phenolic compounds may play a role in the overall antioxidant activities of the plants. The results of the study highlighted the potential of this underexploited Curcuma species which could serve as a new source of important phytochemicals and natural antioxidant that could be incorporated in functional foods and nutraceuticals. In addition, chemical and biological evidence shown in the present work has rationalised the different uses of various plant parts of C. aeruginosa.

 

Keywords: Antioxidant; Curcuma aeruginosa; GC-MS/MS; metabolomics

 

ABSTRAK

Suatu analisis perbandingan metabolit daripada bahagian berlainan Curcuma aeruginosa, iaitu daun, batang, akar adventisius dan rizom dijalankan dengan menggunakan GC-MS/MS berserta dengan analisis statistik multivariasi. Analisis GC-MS/MS mengesahkan kehadiran 26 metabolit dalam hampir kesemua sampel dengan kebanyakan metabolit tergolong dalam kumpulan terpenoid. Analisis Komponen Utama (PCA) menunjukkan terdapat perbezaan ketara metabolit antara rizom dan bahagian tumbuhan lain seperti batang, daun dan akar adventisius yang dapat dijelaskan dengan kandungan yang tinggi terpenoidnya, termasuk curzerene, alfa-farnesen, furanocoumarin, velleral, germacrone cineole, borneol, beta- dan gama-elemene dan methenolone. Keputusan analisis pengklusteran hierarki (HCA) adalah selari dengan keputusan PCA dengan sebahagian besar terpenoid yang didapati di dalam rizom dikluster bersama. Ini disokong oleh analisis korelasi Pearson yang menunjukkan perkaitan yang signifikan antara terpenoid berkenaan. Akar adventisius menunjukkan aktiviti antioksidan tertinggi berbanding dengan bahagian tumbuhan yang lain yang disebabkan oleh kandungan keseluruhan fenoliknya yang paling tinggi. Jumlah kandungan keseluruhan fenolik (TPC) daripada semua bahagian tumbuhan berkolerasi secara positif dengan aktiviti antioksidan (DPPH, FRAP) yang menunjukkan bahawa sebatian fenolik mungkin memainkan peranan penting dalam menyumbang kepada aktiviti antioksidan tumbuhan. Keputusan kajian menekankan potensi spesies Curcuma yang kurang dieksploitasi ini untuk menjadi satu sumber baru fitokimia dan antioksidan semula jadi yang penting yang boleh digunakan dalam makanan fungsian dan nutraseutik. Tambahan lagi, bukti kimia dan biologi yang diperoleh dalam kajian ini memberikan rasional kepada penggunaan berbeza pelbagai bahagian tumbuhan C. aeruginosa.

 

Kata kunci: Antioksida; Curcuma aeruginosa; GC-MS/MS; metabolomik

RUJUKAN

Abdul Wahab, I.R., Blagojevic, P.D., Radulovic, N.S. & Boylan, S. 2011. Volatiles of Curcuma mangga Val. & Zijp (Zingiberaceae) from Malaysia. Chemistry and Biodiversity 8(11): 2005-2014.

Angel, G.R., Vimala, B. & Nambisan, B. 2012. Phenolic content and antioxidant activity in five underutilized starchy Curcuma species. International Journal of Pharmacognosy and Phytochemical Research 4: 69-73.

Akiyama, K., Matsuzaki, K. & Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043): 824-827.

Atkinson, J.A., Rasmussen, A., Traini, R., Voß, U., Sturrock, C., Mooney, S.J., Wells, D.M. & Bennett, M.J. 2014. Branching out in roots: Uncovering form, function and regulation. Plant Physiology 166(2): 538-550.

Behar, N., Tiwari, K.L. & Jadhav, S.K. 2013. Comparative phytochemical screening of bioactive compounds in Curcuma caesia Roxb. and Curcuma longa. Research Journal of Medicinal Plants 7: 113-118.

Benzie, I.F.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': The FRAP assay. Analytical Biochemistry 239: 70-76.

Boeing, J.S., Barizoa, E.O., Costa, E., Silva, B., Montanher, P.F., de Cinque Almeida, V. & Visentainer, J.V. 2014. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chemistry Central Journal 8: 48.

Chan, E.W.C., Lim, Y.Y., Wong, L.F., Lianto, F.S., Wong, S.K., Lim, K.K., Joe, C.E. & Lim, T.Y. 2008. Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chemistry 109: 477-483.

Chan, W.C., Ng, V.P., Tan, V.V. & Low, Y.Y. 2011. Antioxidant and antibacterial properties of Alpinia galanga, Curcuma longa and Etlingera elatior (Zingiberaceae). Pharmacognosy Journal 3: 54-61.

Childs, K.L., Davidson, R.M. & Buell, C.R. 2011. Gene coexpression network analysis as a source of functional annotation for rice genes. PLOS One 6: e22196.

Choudury, D., Ghosal, M., Das, A.P. & Mandal, P. 2011. Improvement of propagation technique and evaluation of in vitro antioxidant activity of Curcuma aeruginosa Roxburgh. In Recent Studies in Biodiversity and Traditional Knowledge in India, edited by Gosh, C. & Das, A.P. Gour College, Malda. pp. 287-293.

Degenhardt, J., Köllner, T.G. & Gershenzon, J. 2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70(15-16): 1621-1637.

Deepika, S., Narendra, K., Ritika, M., Shankhdhar, S.C. & Deepti, S. 2017. Stress induced alteration in the antioxidant activity of in vitro adventitious roots of Withania somnifera (Genotype Jawahar 20). International Journal of Plant Research 30: 68-72.

Dey, P., Dutta, S. & Chaudhuri, T.K. 2015. Comparative phytochemical profiling of Clerodendrum infortunatum L. using GC-MS method coupled with multivariate statistical approaches. Metabolomics 5: 147.

Frankel, E.N. & Meyer, A.S. 2000. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food & Agriculture 80: 1925-1941.

Galato, D.L., Ckless, K., Susin, M.F., Giacomelli, C., Ribeiro-do-Valle, R.M. & Spinelli, A. 2001. Antioxidant capacity of phenolic and related compounds: Correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox Reports 6: 243-250.

Ghasemzadeh, A., Jaafar, H.Z., Ashkani, S., Rahmat, A., Juraimi, A.S., Puyeh, A. & Mohamed, M.T.M. 2016. Variation in secondary metabolite production as well as antioxidant and antibacterial activities of Zingiber zerumbet (L.) at different stages of growth. BMC Complementary and Alternative Medicine 16: 104-114.

Ghasemzadeh, A., Jaafar, H.Z. & Rahmat, A. 2010. Elevated carbon dioxide increases contents of flavonoids and phenolic compounds and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules 15: 7907-7922.

Gorinstein, S., Zachwieja, Z., Katrich, E., Pawelzik, E., Haruenkit, R., Trakhtenberg, S. & Martin-Belloso, O. 2004. Comparison of the contents of the main antioxidant compounds and the antioxidant activity of white grapefruit and his new hybrid. Lebensmittel-Wissenschaft und-Technologie 37: 337-343.

Hans, J.S., Lee, S., Kim, H.Y. & Lee, C.H. 2015. MS-based metabolite profiling of aboveground and root components of Zingiber mioga and officinale. Molecules 20: 16170-16185.

Haissig, B.E. 1973. Influences of auxins and auxin synergists on adventitious root primordium initiation and development. New Zealand Journal of Forestry Science 2: 311-323.

Huang, Q., Huang, X., Deng, J., Liu, H., Liu, Y., Yu, K. & Huang, B. 2016. Differential gene expression between leaf and rhizome in Atractylodes lancea: A comparative transcriptome analysis. Frontiers in Plant Science 7: 348.

Jaleel, C., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H., Chang-Xing, Z., Hong-Bo, S. & Panneerselvam, R. 2009. Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum 31(3): 427-436.

Javadi, N., Abas, F., Mediani, A., Hamid, A.A., Khatib, A., Simoh, S. & Shaari, K. 2015. Effect of storage time on metabolite profile and alpha-glucosidase inhibitory activity of Cosmos caudatus leaves-GCMS based metabolomics approach. Journal of Food Drug Analyses 23: 433-441.

Jiang, H., Xie, Z., Koo, H.J., McLaughlin, S.P., Timmermann, B.N. & Gang, D.R. 2006. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry 67(15): 1673-1685.

Krajnc, A.U., Turinek, M. & Ivancici, A. 2013. Morphological and physiological changes during adventitious root formation as affected by auxin metabolism: Stimulatory effect of auxin containing seaweed extract treatment. Agricultura 10: 17-27.

Mokrosnop, V.M. 2014. Functions of tocopherols in the cells of plants and other photosynthetic organisms. Ukraninian Biochemical Journal 86: 26-36.

Paduch, R., Kandefer-Szerszeń, M., Trytek, M. & Fiedurek, J. 2007. Terpenes: Substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis (Warsz) 55: 315-327.

Pandey, A.K. & Chowdury, A.R. 2003. Volatile constituents of the rhizomes oil of Curcuma caesia Rox India. Flavour Fragrance Journal 18: 463-465.

Patel, R.M. & Patel, N.J. 2011. In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods. Journal of Advanced Pharmacy Education & Research 1: 52-68.

Porfirio, S., Calado, M.L., Noceda, C., Cabrita, M.J., da Silva, M.G., Azadi, P. & Peixe, A. 2016. Tracking biochemical changes during adventitious root formation in olive (Olea europaea L.) Scientia Horticulturae 204: 41-53.

Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T. & Thiagarajan, M. 2003. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34: 374-383.

Sandeep, S., Sanghamitra, N. & Sujata, M. 2015. Differential effect of soil and environment on metabolic expression of turmeric (Curcuma longa cv. Roma). Indian Journal of Experimental Biology 53: 406-411.

Sellappan, S., Akoh, C.C. & Krewer, G. 2002. Phenolic compounds and antioxidant capacity of georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry 50: 2432-2438.

Simoh, S. & Zainal, A. 2015. Chemical profiling of Curcuma aeruginosa Roxb. rhizome using different techniques of solvent extraction. Asian Pacific Journal of Tropical Biomedicine 5: 412-417.

Srivastava, S., Chitransi, N., Srivastava, S., Dan, M., Rawat, A. & Pushpangadan, P. 2006. Pharmacognostic of Curcuma aeruginosa Roxb. Natural Product Science 12: 162-165.

Tanvir, E.M., Hossen, S., Hossain, M.F., Afroz, R., Gan, S.H., Khalil, M.I. & Karim, N. 2017. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. Journal of Food Quality 2017: 8471785.

Zhang, A., Wang, Y., Li, H.L., Wen, Q., Yin, H., Zeng, N.K., Lai, W.Y., Wei, N., Cheng, S.Q., Kang, S.L., Chen, F. & Li, Y.B. 2015. Simultaneous quantification of seventeen bioactive components in rhizome and aerial parts of Alpinia officinarum Hance using LC-MS/MS. Analytical Methods 7: 4919-4930.

 

*Pengarang untuk surat-menyurat; email: sanimah@mardi.gov.my

 

 

 

 

 

sebelumnya