Sains Malaysiana 47(12)(2018): 3069–3075

http://dx.doi.org/10.17576/jsm-2018-4712-17

 

Antioxidant Activity of Pitcher Extracts from Three Nepenthes Species

(Aktiviti Antioksidan Ekstrak Kendi bagi Tiga Spesis Nepenthes)

 

MUHAMMAD AQIL FITRI ROSLI, KAMALRUL AZLAN AZIZAN & HOE-HAN GOH*

 

Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 14 September 2018 /Diterima: 19 September 2018

 

ABSTRACT

Nepenthes, locally known as 'periuk kera' in Malaysia, is a fascinating species due to uniqueness in their morphology in having pitcher organ for carnivorous diet. The pitcher plant has been used for cooking traditional delicacies and as traditional remedies to treat illness. Hence, this species might possess beneficial health properties. This study aimed to compare the antioxidant activity of the pitcher extracts from Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. The samples were extracted using methanol:chloroform:water (3:1:1) via sonication assisted extraction and the extracts were subjected to three different antioxidant assays, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing power (FRAP) and total phenolic content (TPC). Extract from N. ampullaria exhibited the strongest radical scavenging activity (0.148 ± 0.04 mg/mL) with the highest ferric reducing power (0.009 ± 0.003 mg GA/mg dry weight) among the three species, whereas that of N. rafflesiana possessed the highest phenolic content (0.057 ± 0.017 mg GA/mg dry weight). However, the antioxidant capacities of the pitcher extracts were not significantly different (p>0.05) between the three species and were much lower than the gallic acid as a standard reference.

 

Keywords: Antioxidants activity; DPPH assay; ferric reducing power assay; Nepenthes sp.; total phenolic content

 

ABSTRAK

Nepenthes, lebih dikenali sebagai 'periuk kera' di Malaysia merupakan suatu spesies yang menakjubkan kerana keunikan morfologinya dalam mempunyai organ seperti kendi untuk diet karnivor. Tumbuhan berkendi ini telah digunakan dalam masakan tradisi dan juga sebagai ubat-ubatan tradisi untuk merawat penyakit. Oleh itu, spesies ini mungkin memiliki kandungan yang bermanfaat untuk kesihatan. Kajian ini bertujuan untuk membandingkan aktiviti antioksidan ekstrak kendi daripada Nepenthes ampullaria, Nepenthes rafflesiana dan hibrid mereka, Nepenthes × hookeriana. Setiap sampel telah diekstrak dengan menggunakan metanol:kloroform:air (3:1:1) melalui pengekstrakan dengan bantuan sonikasi dan telah diasai dengan tiga asai antioksidan yang berbeza, iaitu 2,2-diphenyl-1-picrylhydrazyl (DPPH), kuasa penurunan ferik (FRAP) dan jumlah kandungan fenolik (TPC). Ekstrak daripada N. ampullaria menunjukkan aktiviti pelupusan radikal yang terkuat (0.148 ± 0.04 mg/mL) dan mempunyai kuasa penurunan ferik yang tertinggi (0.009 ± 0.003 mg GA/mg berat kering) antara ketiga-tiga spesies ini, namun begitu N. rafflesiana mempunyai kandungan fenolik yang tertinggi (0.057 ± 0.017 mg GA/mg berat kering). Walau bagaimanapun, tiada perbezaan signifikan terhadap kebolehan antioksidan ekstrak kendi daripada tiga spesies yang dikaji dan ternyata jauh lebih rendah daripada asid galik yang merupakan piawai rujukan dalam kajian ini.

 

Kata kunci: Aktiviti antioksidan; asai DPPH; asai jumlah kandungan fenolik; asai kuasa penurunan ferik; Nepenthes sp.

RUJUKAN

Adam, J.H. & Hamid, H.A. 2007. Pitcher plants (Nepenthes) recorded from Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia. International Journal of Botany 3(1): 71-77.

Adhikari, S., Joshi, R., Patro, B., Ghanty, T., Chintalwar, G., Sharma, A., Chattopadhyay, S. & Mukherjee, T. 2003. Antioxidant activity of bakuchiol: Experimental evidences and theoretical treatments on the possible involvement of the terpenoid chain. Chemical Research in Toxicology 16(9): 1062-1069.

Ahmad, R., Baharum, S.N., Bunawan, H., Lee, M., Mohd Noor, N., Rohani, E.R., Ilias, N. & Zin, N.M. 2014. Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities. Molecules 19(11): 19220-19242.

Ainsworth, E.A. & Gillespie, K.M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols 2(4): 875-877.

Aung, H., Chia, L., Goh, N., Chia, T., Ahmed, A., Pare, P. & Mabry, T. 2002. Phenolic constituents from the leaves of the carnivorous plant Nepenthes gracilis. Fitoterapia 73(5): 445-447.

Azlim Almey, A.A., Ahmed Jalal Khan, C., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M.R. & Kamarul Rahim, K. 2010. Total phenolic content and primary antioxidant activity of methanolic and ethanolic extracts of aromatic plants' leaves. International Food Research Journal 17(4): 7.

Barros, L., Ferreira, M.J., Queiros, B., Ferreira, I.C. & Baptista, P. 2007. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chemistry 103(2): 413-419.

Carocho, M. & Ferreira, I.C. 2013. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology 51: 15-25.

Clarke, G., Ting, K.N., Wiart, C. & Fry, J. 2013. High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants 2(1): 1-10.

Diplock, A., Charuleux, J.L., Crozier-Willi, G., Kok, F., Rice- Evans, C., Roberfroid, M., Stahl, W. & Vina-Ribes, J. 1998. Functional food science and defence against reactive oxidative species. British Journal of Nutrition 80(1): 77-112.

Goh, H.H., Khairudin, K., Sukiran, N.A., Normah, M.N. & Baharum, S.N. 2016. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. Plant Biology 18: 130-139.

Grassmann, J. 2005. Terpenoids as plant antioxidants. Vitamins & Hormones 72: 505-535.

Huda-Faujan, N., Noriham, A., Norrakiah, A. & Babji, A.S. 2009. Antioxidant activity of plants methanolic extracts containing phenolic compounds. African Journal of Biotechnology 8(3): 484-489.

Ismail, N., Kamariah, A., Lim, L. & Ahmad, N. 2015. Phytochemical and pharmacological evaluation of methanolic extracts of the leaves of Nepenthes bicalcarata Hook. f. International Journal of Pharmacognosy and Phytochemical Research 7(6): 1127-1138.

Khalaf, N.A., Shakya, A.K., Al-Othman, A., El-Agbar, Z. & Farah, H. 2008. Antioxidant activity of some common plants. Turkish Journal of Biology 32(1): 51-55.

Kliebenstein, D. 2004. Secondary metabolites and plant/ environment interactions: A view through Arabidopsis thaliana tinged glasses. Plant, Cell & Environment 27(6): 675-684.

Kopjar, M., Lončarić, A. & Pichler, A. 2016. Synergistic effect of sugars and phenolics on antioxidant activity of pomegranate juice. IFT 13, Annual meeting and Food expo, hlm. 1.utg.

Kuda, T. & Yano, T. 2009. Changes of radical-scavenging capacity and ferrous reducing power in chub mackerel Scomber japonicus and Pacific saury Cololabis saira during 4°C storage and retorting. LWT-Food Science and Technology 42(6): 1070-1075.

Lätti, A.K., Riihinen, K.R. & Jaakola, L. 2011. Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium × intermedium Ruthe). Phytochemistry 72(8): 810-815.

Likhitwitayawuid, K., Kaewamatawong, R., Ruangrungsi, N. & Krungkrai, J. 1998. Antimalarial naphthoquinones from Nepenthes thorelii. Planta Medica 64(03): 237-241.

Maisuthisakul, P., Suttajit, M. & Pongsawatmanit, R. 2007. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chemistry 100(4): 1409-1418.

Mehta, S.K. & Gowder, S.J.T. 2015. Members of antioxidant machinery and their functions. In Basic Principles and Clinical Significance of Oxidative Stress, edited by Gowder, S.J.T. IntechOpen. DOI: 10.5772/6188.

Moran, J.A., Hawkins, B.J., Gowen, B.E. & Robbins, S.L. 2010. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: Flux rates and gland distribution patterns reflect nitrogen sequestration strategies. Journal of Experimental Botany 61(5): 1365-1374.

Onoja, S.O., Omeh, Y.N., Ezeja, M.I. & Chukwu, M.N. 2014. Evaluation of the in vitro and in vivo antioxidant potentials of Aframomum melegueta methanolic seed extract. Journal of Tropical Medicine 2014: 159-343.

Öztürk, M. 2012. Anticholinesterase and antioxidant activities of savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chemistry 134(1): 48-54.

Patel, V.R., Patel, P.R. & Kajal, S.S. 2010. Antioxidant activity of some selected medicinal plants in western region of India. Advances in Biological Research 4(1): 23-26.

Reddy, A. & Grace, J.R. 2016. In vitro evaluation of antioxidant activity of methanolic extracts of selected mangrove plants. Medicinal and Aromatic Plants 5(3): 250-255.

Rosli, M.A.F., Azizan, K.A., Baharum, S.N. & Goh, H.H. 2017. Mass spectrometry data of metabolomics analysis of Nepenthes pitchers. Data in Brief 14: 295-297.

Sampaio, B.L., Edrada-Ebel, R. & Da Costa, F.B. 2016. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports 6: 29265.

Sanusi, S.B., Bakar, M.F.A., Mohamed, M., Sabran, S.F. & Mainasara, M.M. 2017. Ethnobotanical, phytochemical, and pharmacological properties of Nepenthes species: A review. Asian Journal of Pharmaceutical and Clinical Research 10(11): 16-19.

Schwallier, R., De Boer, H.J., Visser, N., Van Vugt, R.R. & Gravendeel, B. 2015. Traps as treats: A traditional sticky rice snack persisting in rapidly changing Asian kitchens. Journal of Ethnobiology and Ethnomedicine 11(24): 1-9.

Shian, T.E. & Abdullah, A. 2012. Antioxidant properties of three banana cultivars (Musa acuminata ‘Berangan’,‘Mas’ and ‘Raja’) extracts. Sains Malaysiana 41(3): 319-324.

Shil, D., Mohanty, J., Das, T., Bhuyan, N., Uriah, T. & Saleem, T. 2010. Protective role of pitcher of Nepenthes khasiana Hook against dexamethazone induced hyperlipidemia and insulin resistance in rats. International Journal of Research in Pharmaceutical Science 1(2): 195-198.

Shin, K.S., Lee, S.K. & Cha, B.J. 2007. Antifungal activity of plumbagin purified from leaves of Nepenthes ventricosa × maxima against phytopathogenic fungi. The Plant Pathology Journal 23(2): 113-115.

Thao, N.P., Luyen, B.T.T., Koo, J.E., Kim, S., Koh, Y.S., Thanh, N.V., Cuong, N.X., Kiem, P. V., Minh, C.V. & Kim, Y.H. 2016. In vitro anti-inflammatory components isolated from the carnivorous plant Nepenthes mirabilis (Lour.) Rafarin. Pharmaceutical Biology 54(4): 588-594.

Van Thanh, N., Thao, N.P., Huong, P.T.T., Lee, S.H., Jang, H.D., Cuong, N.X., Nam, N.H., Van Kiem, P., Kim, Y.H. & Van Minh, C. 2015. Naphthoquinone and flavonoid constituents from the carnivorous plant Nepenthes mirabilis and their anti-osteoporotic and antioxidant activities. Phytochemistry Letters 11: 254-259.

Van Thanh, N., Thao, N.P., Huong, P.T.T., Lee, S.H., Jang, H.D., Cuong, N.X., Nam, N.H., Van Kiem, P., Van Minh, C. & Kim, Y.H. 2015. Two new naphthalene glucosides and other bioactive compounds from the carnivorous plant Nepenthes mirabilis. Archives of Pharmacal Research 38(10): 1774- 1782.

Wang, L., Zhou, Q., Zheng, Y. & Xu, S. 2009. Composite structure and properties of the pitcher surface of the carnivorous plant Nepenthes and its influence on the insect attachment system. Progress in Natural Science 19(12): 1657-1664.

Yehye, W.A., Rahman, N.A., Ariffin, A., Abd Hamid, S.B., Alhadi, A.A., Kadir, F.A. & Yaeghoobi, M. 2015. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry 101: 295-312.

Zulkefli, H.N., Mohamad, J. & Abidin, N.Z. 2013. Antioxidant activity of methanol extract of Tinospora crispa and Tabernaemontana corymbosa. Sains Malaysiana 42(6): 697-706.

 

*Pengarang untuk surat-menyurat; email: gohhh@ukm.edu.my

 

 

 

 

 

sebelumnya