Sains Malaysiana 47(3)(2018):
523–530
http://dx.doi.org/10.17576/jsm-2018-4703-12
Heavy Metals Leaching Behaviour Assessment of Palm Oil Clinker
(Penilaian Tingkah Laku Larut
Lesap Logam Berat Klinker Minyak Sawit)
MOHAMMAD RAZAUL KARIM1*, SUMIANI YUSOFF1, HASHIM ABDUL RAZAK1, FAISAL I. CHOWDHURY2 & HOSSAIN ZABED3
1Department of Civil Engineering, Faculty of
Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Center for Ionics, Department of Physics, University
of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
3Institute of Biological
Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
Diserahkan:
26 Julai 2017/Diterima: 24 Oktober 2017
ABSTRACT
Technical benefit
of incorporation of Palm Oil Clinker (POC) in cement-based
applications has been proven in recent studies. The aim of this work was to
assess the heavy metal leaching behavior to ensure environmental safety of
using POC in cement-based applications. The chemical
composition, morphology, total organic carbon (TOC)
and mineralogy were determined using XRF, FESEM, TOC analyzers and XRD to select appropriate
chemical reagents for complete digestion. HNO3, HF and HClO4 were
used for digestion of POC to measure heavy metal content
using ICP-MS. The chemical reagents CH3COOH,
NH2OH-HCl, H2O2+CH3COONH4 and
HF+HNO3+HCl were used for extraction of acid soluble,
reducible, oxidizable and residual fractions of heavy metals in POC,
respectively. The leaching toxicity of the POC was
investigated by the USEPA 1311 TCLP method.
The result showed the presence of Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba and
Pb with levels of 5.13, 11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97 and
1.76 mg/kg, respectively, in POC. The leaching value in mg/L
of As (4.56), Cu(1.05), Be (0.89), Zn(0.51), Ba(0.26),
Ni (0.17), V(0.15), Cr(0.001) and Se (0.001) is found well below the standard
limit of risk. Risk assessment code (RAC) analysis confirms the safe
incorporation of POC in cement-based applications.
Keywords:
Cement-based applications; heavy metal; leaching toxicity; palm oil clinker;
risk assessment code
ABSTRAK
Manfaat teknikal
penggabungan Clinker Minyak Sawit (POC)
dalam aplikasi berasaskan simen telah terbukti dalam kajian ini. Tujuan kerja ini adalah untuk menilai tingkah laku larut lesap logam
berat untuk memastikan keselamatan alam sekitar menggunakan POC
dalam aplikasi berasaskan simen. Komposisi
kimia, morfologi, jumlah karbon organik (TOC) dan mineralogi ditentukan menggunakan XRF,
FESEM,
penganalisis TOC dan XRD untuk memilih bahan uji kimia
yang sesuai untuk pencernaan yang lengkap. HNO3,
HF
dan HClO4 digunakan
untuk pencernaan POC untuk mengukur kandungan logam berat menggunakan
ICP-MS.
Bahan uji kimia CH3COOH, NH2OH-HCl,
H2O2+ CH3COONH4
dan HF+ HNO3+ HCl digunakan untuk pengekstrakan asid larut, penurunan,
pengoksidaan dan sisa pecahan logam berat masing-masing dalam
POC. Ketoksikan lesapan POC telah dikaji menggunakan kaedah USEPA 1311 TCLP. Keputusan menunjukkan
kehadiran Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba dan Pb dengan
tahap 5.13, 11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97
dan 1.76 mg /kg, masing-masing dalam POC. Nilai lesapam dalam mg/L As (4.56),
Cu (1.05), Be (0.89), Zn (0.51), Ba
(0.26), Ni (0.17), V (0.15), Cr (0.001) 0.001) didapati jauh daripada
batasan piawaian risiko. Analisis kod penilaian risiko (RAC) mengesahkan keselamatan pematuhan
POC dalam aplikasi berasaskan simen
Kata kunci: Aplikasi berasaskan simen; ketoksikan larut lesap;
klinker minyak sawit; logam berat; penilaian kod risiko
RUJUKAN
Ahmad, H., Hilton, M., Mohd, S. & Mohd Noor,
N. 2007. Mechanical properties of palm oil clinker concrete. Engineering
Conference on Energy & Environment.
Aini Azura, A., Fauziah, C. & Samsuri, A.
2012. Cadmium and zinc concentrations in soils and
oil palm tissues as affected by long-term application of phosphate rock
fertilizers. Soil and Sediment Contamination: An International
Journal 21(5): 586-603.
Awalludin, M.F., Sulaiman, O., Hashim, R. & Nadhari, W.N.A.W.
2015. An overview of the oil palm industry in Malaysia and
its waste utilization through thermochemical conversion, specifically via
liquefaction. Renewable and Sustainable Energy Reviews 50:
1469-1484.
Azamana, F., Juahira, H., Yunusb, K., Azida, A.,
Kamarudina, M.K.A., Ekhwan, M., Torimana, A.D.M., Amrana, M.A., Hasnama, C.N.C.
& Saudia, A.S.M. 2015. Heavy metal in fish: Analysis and
human health-a review. Jurnal Teknologi 77(1): 61-69.
Aziz, R.A., Rahim, S.A., Sahid, I. & Idris, W.M.R. 2015.
Speciation and availability of heavy metals on serpentinized paddy soil and
paddy tissue. Procedia-Social and Behavioral Sciences 195: 1658-1665.
Azrina, A., Khoo, H., Idris, M., Amin, I. &
Razman, M.R. 2011. Major inorganic elements in tap water samples in Peninsular
Malaysia. Malaysian Journal of Nutrition 17(2): 271-276.
Baharim, N.B., Yusop, Z., Yusoff, I., Wan Muhd Tahir, W.Z.,
Askari, M., Othman, Z. & Zalnal Abidin, M.R. 2016. The
relationship between heavy metals and trophic properties in Sembrong Lake,
Johor. Sains Malaysiana 45(1): 43-53.
Commission, E. 2013. Peninsular Malaysia
Electricity Supply Industr y Outlook 2013, Malaysia.
Grumiaux, F., Demuynck, S., Pernin, C. & Leprêtre, A. 2015. Earthworm populations of
highly metal-contaminated soils restored by fly ash-aided phytostabilisation. Ecotoxicology
and Environmental Safety 113: 183-190.
Haiying,
Z., Youcai, Z. & Jingyu, Q. 2010. Characterization of
heavy metals in fly ash from municipal solid waste incinerators in Shanghai. Process Safety and Environmental Protection 88(2): 114-124.
Hooper, K., Iskander, M., Sivia, G., Hussein, F., Hsu, J.,
DeGuzman, M., Odion, Z., Ilejay, Z., Sy, F. & Petreas, M. 1998. Toxicity characteristic
leaching procedure fails to extract oxoanion-forming elements that are
extracted by municipal solid waste leachates. Environmental Science &
Technology 32(23): 3825-3830.
Ibrahim,
H.A. & Razak, H.A. 2016. Effect of palm oil clinker
incorporation on properties of pervious concrete. Construction and
Building Materials 115: 70-77.
Jang,
J., Ahn, Y., Souri, H. & Lee, H. 2015. A novel eco-friendly porous concrete
fabricated with coal ash and geopolymeric binder: Heavy metal leaching
characteristics and compressive strength. Construction and Building
Materials 79: 173-181.
Kanadasan,
J. & Abdul Razak, H. 2015. Utilization of palm oil
clinker as cement replacement material. Materials 8(12):
8817-8838.
Kanadasan, J. & Razak, H.A. 2014a. Mix design for
self-compacting palm oil clinker concrete based on particle packing. Materials
& Design 56: 9-19.
Kanadasan, J. & Razak, H.A. 2014b. Fresh
Properties of Self-compacting Concrete Incorporating Palm Oil Clinker. New York: Springer. pp. 249-259.
Karim,
M.R., Hashim, H., Razak, H.A. & Yusoff, S. 2017. Characterization
of palm oil clinker powder for utilization in cement-based applications. Construction and Building Materials 135: 21-29.
Karim, M.R., Hashim, H. & Razak, H.A. 2016a Assessment
of pozzolanic activity of palm oil clinker powder. Construction and
Building Materials 127: 335-343.
Karim, M.R., Hashim, H. & Razak, H.A. 2016b. Thermal activation
effect on palm oil clinker properties and their influence on strength
development in cement mortar. Construction and Building Materials 125:
670-678.
Li, X., Gan, C. & Hu, B. 2011. Accessibility
to microcredit by Chinese rural households. Journal of Asian
Economics 22(3): 235-246.
Lincoln, J.D., Ogunseitan, O.A., Shapiro, A.A. &
Saphores, J.D.M. 2007. Leaching assessments of hazardous materials in cellular
telephones. Environmental Science & Technology 41(7): 2572-2578.
Mani, U., Prasad, A., Kumar, V.S., Lal, K., Kanojia, R.,
Chaudhari, B. & Murthy, R. 2007. Effect of fly ash inhalation
on biochemical and histomorphological changes in rat liver. Ecotoxicology
and Environmental Safety 68(1): 126-133.
Markad,
V.L., Gaupale, T.C., Bhargava, S., Kodam, K.M. & Ghole, V.S. 2015.
Biomarker responses in the earthworm, Dichogaster curgensis exposed to
fly ash polluted soils. Ecotoxicology and Environmental Safety 118:
62-70.
Musson,
S.E., Jang, Y.C., Townsend, T.G. & Chung, I.H. 2000. Characterization
of lead leachability from cathode ray tubes using the toxicity characteristic
leaching procedure. Environmental Science & Technology 34(20):
4376-4381.
Nayak, A., Raja, R., Rao, K., Shukla, A., Mohanty, S.,
Shahid, M., Tripathi, R., Panda, B., Bhattacharyya, P. & Kumar, A. 2015. Effect
of fly ash application on soil microbial response and heavy metal accumulation
in soil and rice plant. Ecotoxicology and Environmental Safety 114:
257-262.
Pan,
Y., Wu, Z., Zhou, J., Zhao, J. Ruan, X., Liu, J. & Qian, G. 2013. Chemical
characteristics and risk assessment of typical municipal solid waste
incineration (MSWI) fly ash in China. Journal of Hazardous Materials 261:
269-276.
Pontes,
F.V.M., de O. Mendes, B.A., de Souza, E.M.F., Ferreira, F.N., da Silva, L.I.D.,
Carneiro, M.C., Monteiro, M.I.C., de Almeida, M.D., Neto, A.A. & Vaitsman,
D.S. 2010. Determination of metals in coal fly ashes using ultrasound-assisted
digestion followed by inductively coupled plasma optical emission spectrometry. Analytica chimica acta 659(1-2): 55-59.
Safiuddin, M., M. Abdus Salam and M. Z. Jumaat (2011). Utilization of palm oil
fuel ash in concrete: A review. Journal of Civil Engineering
and Management 17(2): 234-247.
Sahibin, A., Razi, I., Zulfahmi, A., Tukimat, L., Barzani,
G., Jumaat, H. & Low, H. 2008. Heavy metals uptake by terung
pipit (Solanum torvum) in ultrabasic soil at Kuala Pilah, Negeri
Sembilan. Sains Malaysiana 37(4): 323-330.
Shaheen,
S.M. & Rinklebe, J. 2015. Impact of emerging and low cost
alternative amendments on the (im) mobilization and phytoavailability of Cd and
Pb in a contaminated floodplain soil. Ecological Engineering 74:
319-326.
Singh,
J. & Kalamdhad, A.S. 2013. Assessment of bioavailability and leachability
of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecological
Engineering 52: 59-69.
Singh,
J. & Lee, B.K. 2015. Reduction of environmental
availability and ecological risk of heavy metals in automobile shredder
residues. Ecological Engineering 81: 76-81.
Sun, Y., Xie, Z., Li, J., Xu, J., Chen, Z. & Naidu, R.
2006. Assessment of toxicity of heavy metal contaminated soils by the toxicity
characteristic leaching procedure. Environmental Geochemistry and Health 28(1-2):
73-78.
Tiwari,
M.K., Bajpai, S., Dewangan, U. & Tamrakar, R.K. 2015. Suitability of
leaching test methods for fly ash and slag: A review. Journal of Radiation
Research and Applied Sciences 8(4): 523-537.
Wang, F.H., Zhang, F., Chen, Y.J., Gao, J. & Zhao, B.
2015. A comparative study on the heavy metal solidification/
stabilization performance of four chemical solidifying agents in municipal
solid waste incineration fly ash. Journal of Hazardous Materials 300:
451-458.
Wu,
S., Xu, Y., Sun, J., Cao, Z., Zhou, J., Pan, Y. & Qian, G. 2015. Inhibiting
evaporation of heavy metal by controlling its chemical speciation in MSWI fly
ash. Fuel 158: 764-769.
Xie,
Y. & Zhu, J. 2013. Leaching toxicity and heavy metal bioavailability of
medical waste incineration fly ash. Journal of Material Cycles and Waste
Management 15(4): 440-448.
Yap,
C.K. 2012. Application of factor analysis in geochemical
fractions of heavy metals in the surface sediments of the offshore and
intertidal areas of Peninsular Malaysia. Sains Malaysiana 41(4):
389-394.
Yunus,
K., Mohd Yusuf, N., Shazili, M., Azhar, N., Ong, M.C., Saad, S., Khan
Chowdhury, A.J. & Bidai, J. 2011. Heavy metal
concentration in the surface sediment of Tanjung Lumpur mangrove forest,
Kuantan, Pahang, Malaysia. Sains Malaysiana 40(2): 89-92.
Zhou,
Y., Ning, X.A., Liao, X., Lin, M., Liu, J. & Wang, J. 2013. Characterization and environmental risk
assessment of heavy metals found in fly ashes from waste filter bags obtained
from a Chinese steel plant. Ecotoxicology and Environmental Safety 95:
130-136.
*Pengarang untuk
surat-menyurat; email: mrkakanda@yahoo.com