Sains Malaysiana 47(6)(2018): 1147–1155

http://dx.doi.org/10.17576/jsm-2018-4706-10

 

Effect of Plasma Treatment (He/CH4) on the Glass Surface for the Reduction of Powder Flux Adhesion in the Spray Drying Process

(Kesan Rawatan Plasma (He/CH4) terhadap Permukaan Kaca untuk Pengurangan

Serbuk Lekatan Fluks di dalam Proses Penyemburan Pengeringan)

 

NADIAH RAMLAN1, NAZIRAH WAHIDAH MOHD ZAMRI1, MOHAMAD YUSOF MASKAT1, MOHD SUZEREN MD JAMIL1, CHIN OI HOONG2, LAU YEN THENG2

& SAIFUL IRWAN ZUBAIRI1*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Plasma Technology Research Centre, Physics Department, Universiti Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 25 September 2017/Diterima: 5 Februari 2018

 

 

ABSTRACT

A 50Hz glow discharge He/CH4 plasma was generated and applied for the glass surface modification to reduce the powder adhesion on wall of spray dryer. The hydrophobicity of the samples determined by the water droplet contact angle and adhesion weight on glass, dependent on the CH4 flow rate and plasma exposure time. The presence of CH3 groups and higher surface roughness of the plasma treated glass were the factors for its hydrophobicity development. Response surface methodology (RSM) results using central composite rotatable design (CCRD) showed that optimal responses were obtained by the combination of parameters, CH4 gas flow rate = 3 sccm and exposure time = 10 min. In optimum conditions, the contact angle increased by 47% and the weight of the adhesion reduced by 38% (w/w). The plasma treatment could enhance the value of the contact angle and thus reduced the adhesion on the spray dryer glass surface.

 

Keywords: Flux adhesion; hydrophobic; plasma treatment; powder; spray dryer; surface treatment

 

ABSTRAK

Pelepasan cahaya 50Hz plasma CH4 dijana dan digunakan pada modifikasi permukaan kaca untuk mengurangkan lekatan serbuk pada dinding penyembur pengering. Hidrofobisiti sampel ditentukan oleh sudut sentuh titisan air dan pemberat lekatan pada kaca, bergantung kepada kadar pengaliran CH4 dan tempoh dedahan plasma. Kehadiran kumpulan CH3 dan kekasaran permukaan plasma yang lebih tinggi dengan rawatan kaca adalah faktor kepada pembentukan hidrofobisitinya. Keputusan kaedah gerak balas permukaan (RSM) menggunakan reka bentuk berputar komposit berpusat (CCRD) menunjukkan bahawa respons optimum diperoleh daripada kombinasi parameter, kadar pengaliran gas CH4 = 3 sccm dan tempoh dedahan = 10 minit. Dalam keadaan optimum, sudut sentuh meningkat sebanyak 47% dan pemberat lekatan dikurangkan sebanyak 38% (w/w). Rawatan plasma boleh meningkatkan nilai sudut sentuh dan seterusnya mengurangkan lekatan pada permukaan kaca penyembur pengering.

 

Kata kunci: Hidrofobik; lekatan fluks; penyembur pengering; rawatan permukaan; rawatan plasma

RUJUKAN

Avram, M., Avram, A.M., Bragaru, A., Ghiu, A. & Iliescu, C. 2008. Plasma surface modification for selective hydrophobic control. Romanian Journal of Information Science and Technology 11: 409-422.

Bhushan, B. & Jung, Y.C. 2011. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science 56: 1-108.

Bhandari, B.R. & Howes, T. 2005. Relating the stickiness property of foods undergoing drying and dried products to their surface energetics. Drying Technology 23: 781-797.

Bismarck, A., Brostow, W., Chiu, R., Hagg Lobland, H.E. & Ho, K.K. 2008. Effects of surface plasma treatment on tribology of thermoplastic polymers. Polymer Engineering & Science 48: 1971-1976.

Borcia, G., Anderson, C. & Brown, N. 2004. The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge Part I. Applied Surface Science 221: 203-214.

Bowden, F.P. & Tabor, D. 2001. The Friction and Lubrication of Solid. Oxford: Oxford University Press.

Cassie, A. & Baxter, S. 1944. Wettability of porous surfaces. Transactions of the Faraday Society 40: 546-551.

Chaiwong, C., Rachtanapun, P., Wongchaiya, P., Auras, R. & Boonyawan, D. 2010. Effect of plasma treatment on hydrophobicity and barrier property of polylactic acid. Surface and Coatings Technology 204: 2933-2939.

Coen, M.C., Lehmann, R., Groening, P. & Schlapbach, L. 2003. Modification of the micro-and nanotopography of several polymers by plasma treatments. Applied Surface Science 207: 276-286.

Fang, Z. & Bhandari, B. 2011. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry 129: 1139-1147.

Fang, Z., Qiu, Y. & Kuffel, E. 2004. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air. Journal of Physics D: Applied Physics 37: 2261.

Fuller, K.N.G. 1975. The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. Lond. A 345(1642): 327-342.

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. & Saurel, R. 2007. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40: 1107-1121.

Keogh, M., O’kennedy, B., Kelly, J., Auty, M., Kelly, P., Fureby, A. & Haahr, A.M. 2001. Stability to oxidation of spraydried fish oil powder microencapsulated using milk ingredients. Journal of Food Science 66: 217-224.

Keshani, S., Daud, W.R.W., Nourouzi, M., Namvar, F. & Ghasemi, M. 2015. Spray drying: An overview on wall deposition, process and modeling. Journal of Food Engineering 146: 152-162.

Keshani, S., Daud, W.R.W., Woo, M.W., Nourouzi, M., Talib, M.Z.M., Chuah, A.L. & Russly, A. 2013. Reducing the deposition of fat and protein covered particles with low energy surfaces. Journal of Food Engineering 116: 737-748.

Kota, K. & Langrish, T. 2006. Fluxes and patterns of wall deposits for skim milk in a pilot-scale spray dryer. Drying Technology 24: 993-1001.

Millqvist-Fureby, A. 2003. Characterisation of spray-dried emulsions with mixed fat phases. Colloids and Surfaces B: Biointerfaces 31: 65-79.

Noh, S. & Moon, S.Y. 2014. Formation and characterization of hydrophobic glass surface treated by atmospheric pressure He/CH4 plasma. Journal of Applied Physics 115: 043307- 1-043307-5.

Nosonovsky, M. & Bhushan, B. 2007. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 107: 969-979.

Oakley, D. 1994. Scale-up of spray dryers with the aid of computational fluid dynamics. Drying Technology 12: 217- 233.

Tan, S.H., Nguyen, N.T., Chua, Y.C. & Kang, T.G. 2010. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4: 032204-1-032204-8.

Van Der Wal, P. & Steiner, U. 2007. Super-hydrophobic surfaces made from teflon. Soft Matter 3: 426-429.

Wang, B. & Xu, G. 2002. wa Science in China Series B: Chemistry 45: 299-310.

Wen, C-H., Chuang, M-J. & Hsiue, G-H. 2006. Asymmetric surface modification of poly (ethylene terephthalate) film by CF4 plasma immersion. Applied Surface Science 252: 3799-3805.

Yamamoto, T., Okubo, M., Imai, N. & Mori, Y. 2004. Improvement on hydrophilic and hydrophobic properties of glass surface treated by nonthermal plasma induced by silent corona discharge. Plasma Chemistry and Plasma Processing 24: 1-12.

Yang, X., Moravej, M., Babayan, S., Nowling, G. & Hicks, R. 2005. High stability of atmospheric pressure plasmas containing carbon tetrafluoride and sulfur hexafluoride. Plasma Sources Science and Technology 14: 412.

 

 

*Pengarang untuk surat-menyurat; email: saiful-z@ukm.edu.my

 

 

 

 

sebelumnya