Sains Malaysiana 47(6)(2018): 1259–1268
http://dx.doi.org/10.17576/jsm-2018-4706-22
Proteomic Analysis of Stored Core Oil
Palm Trunk (COPT) Sap Identifying Proteins Related to Stress, Disease
Resistance and Differential Gene/Protein Expression
(Analisis Proteomik Pengenalpastian Protein Sap
Teras Batang Kelapa Sawit (COPT) Tersimpan
Berkaitan Tekanan, Pertahanan Penyakit dan Perbezaan Pengekspressan
Gen/Protein)
MARHAINI MOSTAPHA1, NOORHASMIERA ABU JAHAR1, KAMALRUL AZLAN AZIZAN2, SARANI ZAKARIA1, WAN MOHD AIZAT2 & SHARIFAH NABIHAH SYED JAAFAR1*
1Bioresources and Biorefinary Laboratory, Faculty of Science
and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Institute of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia
43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 4 Oktober 2017/Diterima: 18
Januari 2018
ABSTRACT
Oil palm is the major crop grown and
cultivated in various Asian countries such as Malaysia, Indonesia and Thailand.
The core of oil palm trunk (COPT) consists of high sugar
content, hence suitable for synthesis of fine chemicals and biofuels. Increase
of sugar content was reported previously during prolonged COPT storage.
However, until now, there has been no report on protein profiles during
storage. Therefore, in this study, protein expression of the COPT during
the storage period of one to six weeks was investigated using sodium dodecyl
sulphate polyacrylamide gel electrophoresis (SDS-PAGE)
coupled with optical density quantification and multivariate analyses for
measuring differentially expressed proteins. Accordingly, protein bands were
subjected to tryptic digestion followed by tandem mass spectrometry (nanoLC-MS/MS)
protein identification. The results from SDS-PAGE showed consistent
protein bands appearing across the biological replicates ranging from 10.455 to
202.92 kDa molecular weight (MW) regions. The findings from
the principal component analysis (PCA) plot illustrated the
separation pattern of the proteins at weeks 4 and 5 of storage, which was
influenced mainly by the molecular weights of 14.283, 25.543, 29.757, 30.549,
31.511, 34.585 and 84.395 kDa, respectively. The majority of these proteins are
identified as those involved in stress- and defense-related, disease
resistance, as well as gene/protein expression processes. Indeed, these
proteins were mostly upregulated during the later storage period suggesting
that long-term storage may influence the molecular regulation of COPT sap.
Keywords: Densitometry analysis; Elaeis
guineensis; LC-MS; principal component analysis; SDS-PAGE
ABSTRAK
Kelapa sawit
merupakan antara tanaman utama di negara Asia seperti Malaysia, Indonesia dan
Thailand. Teras batang kelapa sawit (COPT) mempunyai kandungan gula
yang tinggi, maka ia sesuai digunakan untuk
penghasilan bahan kimia ringkas dan bahan bakar bio. Peningkatan kandungan gula
pada sap daripada COPT yang disimpan telah dilaporkan. Walau bagaimanapun setakat ini, kajian terhadap perubahan profil
protein COPT semasa penyimpanan masih belum diterokai. Maka dalam kajian ini, pengekspresan protein COPT yang
tersimpan selama satu hingga enam minggu telah dikaji menggunakan gel
elektroforesis 1D (SDS-PAGE) ditambah dengan penentuan
ketumpatan optik dan analisis multivariat untuk mengukur jalur protein yang
berbeza. Jalur protein ini kemudiannya dipotong menggunakan
tripsin diikuti dengan pengenalpastian protein menggunakan spektrometri jisim
(nanoLC-MS/MS). Keputusan daripada SDS-PAGE menunjukkan jalur protein yang konsisten merentasi replikasi
biologi dengan berat molekul protein daripada 10.455 kepada 202.92 kDa. Keputusan analisis prinsipal komponen utama (PCA)
menunjukkan corak pemisahan protein pada minggu ke-4 dan minggu ke-5
penyimpanan dipengaruhi oleh berat molekul 14.283, 25.543, 29.757, 30.549,
31.511, 34.585 dan 84.395 kDa. Majoriti protein yang dikenal pasti
merupakan protein yang terlibat dengan tekanan dan pertahanan, protein yang
berkaitan dengan perintang penyakit, serta proses pengekspressan gen atau protein.
Penambahan tempoh penyimpanan telah menyebabkan protein ini dikawal naik
sekaligus mencadangkan kesan tempoh penyimpanan mempengaruhi kawalatur eskpresi
molekul protein sap TBKS.
Kata
kunci: Analisis densitometri; analisis kumpulan utama; Elaeis guineensis; LC-MS; SDS-PAGE
RUJUKAN
Adeyemi, K.D., Mislan, N., Aghwan, Z.A., Sarah, S.A. & Sazili,
A.Q. 2014. Myofibrillar protein profile of Pectoralis major muscle in
broiler chickens subjected to different freezing and thawing methods. International
Food Research Journal 21(3): 1089-1093.
Al-Obaidi,
J.R., Mohd-Yusuf, Y., Razali, N., Jayapalan, J.J., Tey, C.C., Md-Noh, N.,
Junit, S.M., Othman, R.Y. & Hashim, O.H. 2014. Identification of proteins
of altered abundance in oil palm infected with Ganoderma boninense. International
Journal of Molecular Sciences 15(3): 5175-5192.
Barkan, A.
& Small, I. 2014. Pentatricopeptide repeat proteins in plants. Annual
Review of Plant Biology 65: 415-442.
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N.,
Weissig, H., Shindyalov, I.N. & Bourne, P.E. 2000. The Protein
Data Bank. Nucleic Acids Research 28(1): 235-242.
Berrocal-Lobo, M., Ibañez, C., Acebo, P., Ramos, A., Perez- Solis,
E., Collada, C., Casado, R., Aragoncillo, C. & Allona I. 2011. Identification
of a homolog of Arabidopsis DSP4(SEX4) in
chestnut: Its induction and accumulation in stem amyloplasts during winter or
in response to the cold. Plant Cell Environment 34(10): 1693-1704.
Bukhari, N.A., Loh, S.K., Bakar, N.A. & Ismail, M. 2017. Hydrolysis
of residual starch from sago pith residue and its fermentation to bioethanol. Sains
Malaysiana 46(8): 1269-1278.
de Carvalho Silva, R., Carmo, L.S.T., Luis, Z.G., Silva, L.P., Scherwinski-Pereira,
J.E. & Mehta, A. 2014. Proteomic identification of differentially
expressed proteins during the acquisition of somatic embryogenesis
in oil palm (Elaeis guineensis Jacq.). Journal of Proteomics
104: 112-127.
Department of Statistic Malaysia. 2016. Selected
Agriculture Indicators, Malaysia 2016. https://www.dosm.gov.my/v1/
index.php?r=column/cthemeByCat&cat=72&bul_id=Z3Nkh
LSFk2VjZ5dkdUL1JQUGs4dz09&menu_id=Z0VTZGU1UH BUT1VJMFlpaXRR0xpdz09.
Accessed on May 2017.
Desiderio, C., Rossetti, D.V., Iavarone, F., Messana, I. &
Castagnola, M. 2010. Capillary electrophoresis-mass spectrometry:
Recent trends in clinical proteomics. Journal of Pharmaceutical and
Biomedical Analysis 53(5): 1161-1169.
Dickinson, R.J. & Keyse,
S.M. 2006. Diverse physiological functions for dual-specificity MAP kinase
phosphatases. Journal of Cell Science 119(22): 4607-4615.
Hage, D.S., Anguizola,
J.A., Bi, C., Li, R., Matsuda, R., Papastavros, E., Pfaunmiller, E., Vargas, J.
& Zheng, X. 2012. Pharmaceutical and biomedical applications of affinity chromatography: Recent
trends and developments. Journal of Pharmaceutical and Biomedical Analysis 69:
93-105.
Hashemi, A.,
Gharechahi, J., Nematzadeh, G., Shekari, F., Hosseini, S.A. & Salekdeh,
G.H. 2016. Two-dimensional blue native/SDS-PAGE analysis of whole cell lysate
protein complexes of rice in response to salt stress. Journal of
Plant Physiology 200: 90-101.
Hood, L. & Rowen, L. 2013. The human
genome project: Big science transforms biology and medicine. Genome Medicine 5(9): 79.
Hunter, T. 2009. Tyrosine
phosphorylation: Thirty years and counting. Current Opinion in Cell Biology 21(2):
140-146.
Jahar, N.A., Pua, G.,
Wong, J.C., Mostapha, M., Zakaria, S., Chia, C.H. & Jaafar,
S.N.S. 2017. Utilization of core oil palm trunk waste
to methyl levuinate: Physical and chemical characterizations. Waste
and Biomass Valorization pp. 1-6.
Jeffery Daim, L.D., Ooi, T.E.K., Ithnin,
N., Mohd Yusof, H., Kulaveerasingam, H., Abdul Majid, N. & Karsani, S.A.
2015. Comparative proteomic analysis of oil palm leaves infected with Ganoderma
boninense revealed changes in proteins involved in photosynthesis,
carbohydrate metabolism, and immunity and defense. Electrophoresis 36(15):
1699-1710.
Kushwaha, H.R., Singh, A.K., Sopory,
S.K., Singla-Pareek, S.L. & Pareek, A. 2009. Genome wide expression
analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BioMed. Central Genomics 10: 200.
Lai, W.H., Leo, T.K.,
Zainal, Z. & Daud, F. 2014. Preliminary proteomic characterisation of primodia and vegetative dikaryotic
mycelial cells from Tiger’s milk mushroom (Lignosus rhinocerus). Sains
Malaysiana 43(8): 1133-1138.
Liu, B., Fan, J.,
Zhang, Y., Mu, P., Wang, P., Su, J., Lai, H., Li, S., Feng, D., Wang, J. &
Wang, H. 2012. OsPFA-DSP1, a rice protein tyrosine phosphatase, negatively regulates drought
stress responses in transgenic tobacco and rice plants. Plant Cell Reports 31(6):
1021-1032.
Lurin, C., Andres, C., Aubourg, S.,
Bellaoui, M., Bitton, F., Bruyere, C., Caboche, M., Debast, C., Gualberto, J.,
Hoffmann, B., Lecharny, A., Le Ret, M., Martin-Magniette, M.L., Mireau, H.,
Peeters, N., Renou, J.P., Szurek, B., Taconnat, L. & Small, I. 2004.
Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins
reveals their essential role in organelle biogenesis. The Plant Cell 16(8):
2089-2103.
Malaysia Palm Oil Board.
Malaysia Palm Oil Industry: A report. http://www.palmoilworld.org/about
_malaysian-industry. html. Accessed on
20 October 2016.
Martin, G.B., Bogdanove,
A.J. & Sessa, G. 2003. Understanding the functions of plant disease resistance proteins.
Annual Review of Plant Biology 54(1): 23-61.
Mostapha, M., Jahar, N.A., Chin, S.X.,
Jaafar, S.N.S., Zakaria, S., Aizat, W.M. & Azizan, K.A. 2016. Effect of
zeolite catalyst on sugar dehydration for 5 Hydroxymethylfurfural synthesis. American Institute of Physics Conference
Proceedings 1784(1): 040026.
Mostapha, M., Jahar, N.A., Zakaria, S.,
Aizat, W.M., Azizan, K.A. & Jaafar, S.N.S. 2017. Metabolite profiling of
core oil palm trunk (COPT) sap: The effects of different storage durations,
conditions and temperatures. Journal of Oil Palm Research 30(1): 111-120.
Nualkaew, S., Saelim,
H., Tiwawech, D., Parvez, T.P.I. & Phongdara, A. 2017. Role of cytochrome
P450 monooxygenase in the bioactivation of aflatoxin B1. Sains
Malaysiana 46(9): 1499-1503.
Nur Azira, T. & Amin, I. 2012. Differentiation
of bovine and porcine gelatins in processed products via sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS PAGE) and
principal component analysis (PCA) techniques. International
Food Research Journal 19(3): 1175-1180.
Segonzac, C., Macho, A.P., Sanmartín,
M., Ntoukakis, V., Sánchez-Serrano, J.J. & Zipfel, C.
2014. Negative control of BAK1 by protein phosphatase 2A during
plant innate immunity. The European Molecular Biology Organization
Journal 33: 2069-2079.
Shankar, A., Agrawal,
N., Sharma, M., Pandey, A. & Pandey, G.K. 2015. Role of protein tyrosine
phosphatases in plants. Current Genomics 16(4): 224-236.
Smith P., Bustamante, M., Ahammad, H.,
Clark, H., Dong, H., Elsiddig, E.A., Haberl, H., Harper, R., House, J., Jafari,
M., Masera, O., Mbow, C., Ravindranath, N.H., Rice, C.W., Robledo Abad, C.,
Romanovskaya, A., Sperling, F. & Tubiello, F. 2014. Agriculture, forestry
and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate
Change. Contribution of Working Group III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by Edenhofer, O.,
Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler,
A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J.,
Schlömer, S., von Stechow, C., Zwickel, T. & Minx, J.C. Cambridge:
Cambridge University Press.
Sun, H. & Tonks,
N.K. 1994. The coordinated action of protein tyrosine phosphatases and kinases
in cell signaling. Trends in Biochemicals Science 19(11):
480-485.
Wang, W., Vignani, R.,
Scali, M. & Cresti, M. 2006. A universal and rapid protocol for protein extraction from
recalcitrant plant tissues for proteomic analysis. Electrophoresis 27(13):
2782-2786.
Weiser, D.C. & Shenolikar, S. 2003.
Use of protein phosphatase inhibitors. Curr. Protoc. Mol. Biol.
62(1):
18.10.1-18.10-13.
Wormit, A., Butt, S.M., Chairam, I., McKenna,
J.F., Nunes-Nesi, A., Kjaer, L., O'Donnelly, K., Fernie, A.R., Woscholski,
R., Barter, M.C. & Hamann, T. 2012. Osmosensitive changes of
carbohydrate metabolism in response to cellulose biosynthesis inhibition.
Plant Physiology 159(1): 105-117.
Yamada, H., Tanaka, R., Sulaiman, O., Hashim,
R., Hamid, Z.A.A., Yahya, M.K.A., Kosugi, A., Arai, T., Murata,
Y., Nirasawa, S., Yamamoto, K., Ohara, S., Yusof, M.N.M., Ibrahim,
W.A. & Mori, Y. 2010. Old oil palm trunk: A promising source
of sugars for bioethanol production. Biomass and Bioenergy 34:
1608-1613. Žd'árská, M., Zatloukalová,
P., Benítez, M., Šedo, O., Potěšil, D., Novák,
O., Svačinová, J., Pešek, B., Malbeck, J., Vašíčková,
J., Zdráhal, Z. & Hejátko, J. 2013. Proteome analysis
in Arabidopsis reveals shoot- and root-specific targets
of cytokinin action and differential regulation of hormonal homeostasis.
Plant Physiology 161(2): 918-930.
*Pengarang untuk
surat-menyurat; email: nabihah@ukm.edu.my
|