Sains Malaysiana 48(11)(2019): 2297–2306
http://dx.doi.org/10.17576/jsm-2019-4811-01
Practical Predictability
of the 17 December 2014 Heavy Rainfall Event over East Coast of Peninsular
Malaysia using WRF Model
(Kebolehramalan Praktikal
Peristiwa Hujan Lebat pada 17 Disember 2014 di Pantai Timur Semenanjung
Malaysia menggunakan Model WRF)
WAN MAISARAH WAN IBADULLAH1,2, FREDOLIN TANGANG*1, LIEW JUNENG1 & AHMAD FAIRUDZ JAMALUDDIN1,2
1Centre for Earth
Sciences and Environment, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Malaysian Meteorological
Department, Jalan Sultan, 46667 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Diserahkan: 31 Mac 2019/Diterima:
15 Ogos 2019
ABSTRACT
An investigation on the
practical predictability aspects of heavy rainfall event in the east coast
states of Peninsular Malaysia was carried out by simulating the 17 December
2014 episode using the Weather Research and Forecasting (WRF).
The WRF model was configured with three nested domains of 36
km, 12 km, and 4 km horizontal resolution for 36 h simulations. It was found
that the cumulative rainfall amount and the location of the heavy rainfall
centre are sensitive to the choices of Cumulus Parameterisation Scheme (CPS).
The experiment with a resolution of 4 km that used the multiscale Kain-Fritsch
for the outer domains and no cumulus scheme in the inner domain reasonably well
simulated the case. Further analysis suggests that the CPS and
initialisation gave larger impact to the forecast quality compared to boundary
conditions. Grid resolution contributed the least error.
Keywords: Cumulus
schemes; East Coast Peninsular Malaysia; heavy rainfall episode; practical
predictability; WRF model
ABSTRAK
Kajian ke atas kebolehramalan
praktikal peristiwa hujan lebat di Pantai Timur Semenanjung Malaysia
dilakukan dengan mensimulasi episod hujan lebat pada 17 Disember
2014 menggunakan model berangka Weather
Research and Forecasting (WRF). Konfigurasi model WRF
adalah tiga domain tersarang dengan resolusi mendatar
36 km, 12 km dan 4 km. Simulasi dijalankan bagi tempoh 36 jam bermula
pada 12 UTC 16
Disember 2014 sehingga 00 UTC 18 Disember 2014. Daripada segi kebolehramalan
praktikal, kajian ini mendapati keamatan hujan terkumpul dan lokasi
pusat hujan lebat bergantung kepada pemilihan skim pemparameteran
kumulus. Model WRF dengan resolusi 4 km dan gabungan
skim kumulus berbilang skala Kain-Fritsch untuk
dua domain terluar dan tanpa skim kumulus untuk domain dalam berupaya
untuk mensimulasikan kejadian tersebut dengan baik. Kajian juga
mendapati perubahan skim kumulus diikuti dengan syarat awal memberikan
kesan yang lebih besar terhadap kualiti ramalan berbanding syarat
sempadan. Manakala kesan resolusi grid menunjukkan ralat yang paling
kecil.
Kata kunci: Episod hujan
lebat; kebolehramalan praktikal; model WRF;
Pantai Timur Semenanjung Malaysia; skim kumulus
RUJUKAN
Arakawa,
A. & Jung, J.H. 2011. Multiscale modeling of the moist-convective
atmosphere-A review. Atmospheric Research 102(3): 263-285.
Ardie,
W.A., Sow, K.S., Tangang, F., Hussin, A.G., Mahmud, M. & Juneng, L. 2012.
The performance of different cumulus parameterization schemes in simulating the
2006/2007 southern Peninsular Malaysia heavy rainfall episodes. Journal of
Earth System Science 121(2): 317-327.
Chen,
T.C., Tsay, J.D., Yen, M.C. & Matsumoto, J. 2013. The winter rainfall of
Malaysia. Journal of Climate 26(3): 936- 958.
Dudhia,
J. 1989. Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model. Journal of the
Atmospheric Sciences 46(20): 3077-3107.
Dudhia,
J. 1996. A multi-layer soil temperature model for MM5. Preprints, The Sixth
PSU/NCAR Mesoscale Model Users’ Workshop. pp. 22-24.
Field,
C.B., Barros, V., Stocker, T.F. & Dahe, Q. 2012. Managing the Risks of
Extreme Events and Disasters to Advance Climate Change Adaptation: Special
Report of the Intergovernmental Panel On Climate Change. Cambridge:
Cambridge University Press.
Han,
J. & Pan, H.L. 2011. Revision of convection and vertical diffusion schemes
in the NCEP global forecast system. Weather and Forecasting 26(4):
520-533.
Hong,
S.Y., Dudhia, J. & Chen, S.H. 2004. A revised approach to ice microphysical
processes for the bulk parameterization of clouds and precipitation. Monthly
Weather Review 132(1): 103-120.
Hong,
S.Y., Noh, Y. & Dudhia, J. 2006. A new vertical diffusion package with an
explicit treatment of entrainment processes. Monthly Weather Review 134(9):
2318-2341.
Huffman,
G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y.,
Bowman, K.P. & Stocker, E.F. 2007. The TRMM multisatellite precipitation analysis
(TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at
fine scales. Journal of Hydrometeorology 8(1): 38-55.
Janjic,
Z.I. 1994. The step-mountain eta coordinate model: Further developments of the
convection, viscous sublayer, and turbulence closure schemes. Monthly
Weather Review 122(5): 927-945.
Jankov,
I., Gallus Jr., W.A., Segal, M., Shaw, B. & Koch, S.E. 2005. The impact of
different WRF model physical parameterizations and their interactions on warm
season MCS rainfall. Weather and Forecasting 20(6): 1048-1060.
Juneng,
L., Tangang, F.T. & Reason, C.J.C. 2007. Numerical case study of an extreme
rainfall event during 9-11 December 2004 over the east coast of Peninsular
Malaysia. Meteorology and Atmospheric Physics 98(1-2): 81-98.
Kain,
J.S. 2004. The Kain-Fritsch convective parameterization: An update. Journal
of Applied Meteorology 43(1): 170-181.
Kain,
J.S. & Fritsch, J.M. 1993. Convective parameterization for mesoscale
models: The Kain-Fritsch scheme. In The Representation of Cumulus Convection
in Numerical Models, edited by Emanuel, K.A. & Raymond, D.J. Boston:
American Meteorological Society. pp. 165-170.
Kerkhoven,
E., Gan, T.Y., Shiiba, M., Reuter, G. & Tanaka, K. 2006. A comparison of
cumulus parameterization schemes in a numerical weather prediction model for a
monsoon rainfall event. Hydrological Processes 20(9): 1961-1978.
Kumar,
A., Dudhia, J., Rotunno, R., Niyogi, D. & Mohanty, U.C. 2008. Analysis of
the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research
and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological
Society 134(636): 1897-1910.
Litta,
A.J., Chakrapani, B. & Mohankumar, K. 2007. Mesoscale simulation of an
extreme rainfall event over Mumbai, India, using a high-resolution MM5 model. Meteorological
Applications 14(3): 291-295.
Mahoney,
K.M. 2016. The representation of cumulus convection in high-resolution
simulations of the 2013 Colorado front range flood. Monthly Weather Review 144(11):
4265-4278.
Mlawer, E.J., Taubman,
S.J., Brown, P.D., Iacono, M.J. & Clough, S.A. 1997. Radiative transfer for
inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the
longwave. Journal of Geophysical Research: Atmospheres 102 (D14):
16663-16682.
Nielsen-Gammon, J.,
Zhang, F., Odins, A. & Myoung, B. 2005. Extreme rainfall in Texas: Patterns
and predictability. Physical Geography 26(5): 340-364.
Ooi, S.H., Samah, A.A.,
Chenoli, S.N., Subramaniam, K. & Ahmad Mazuki, M.Y. 2017. Extreme
Rainstorms that caused devastating flooding across the East Coast of Peninsular
Malaysia during November and December 2014. Weather and Forecasting 32(3):
849-872.
Rabier, F., Klinker, E.,
Courtier, P. & Hollingsworth, A. 1996. Sensitivity of forecast errors to
initial conditions. Quarterly Journal of the Royal Meteorological Society 122(529):
121-150.
Salimun, E., Tangang, F.
& Juneng, L. 2010. Simulation of heavy precipitation episode over eastern Peninsular
Malaysia using MM5: Sensitivity to cumulus parameterization schemes. Meteorology
and Atmospheric Physics 107(1-2): 33-49.
Skamarock, W.C., Klemp,
J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W.
& Powers, J.G. 2008. A Description of the Advanced Research WRF Version
3. National Center for Atmospheric Research Boulder Co Mesoscale and
Microscale Meteorology Div.
Tangang, F., Supari, S.,
Chung, J., Cruz, F., Salimun, E., Ngai, S., Juneng, L., Santisirisomboon, J.,
Santisirisomboon, J., Ngo_Duc, T., Tan, P.V., Narisma, G., Singhruck, P.,
Gunawan, D., Aldrian, E., Sopaheluwakan, S., Nikulin, G., Yang, H., Remedio,
A.R.C., Sein, D. & Hein-Griggs, D. 2018. Future changes in annual
precipitation extremes over Southeast Asia under global warming of 2°C. APN
Science Bulletin 8(1). doi:10.30852/sb.2018.436.
Tangang, F.,
Farzanmanesh, R., Mirzaei, A., Supari, Salimun, E., Jamaluddin, A.F. &
Juneng, L. 2017. Characteristics of precipitation extremes in Malaysia
associated with El Niño and La Niña events. International Journal of
Climatology 37(S1): 696-716.
Tangang, F.T., Liew, J.,
Salimun, E., Kwan, M.S., Loh, J.L. & Muhamad, H. 2012. Climate change and
variability over Malaysia: Gaps in science and research information. Sains Malaysiana 41(11): 1355-1366.
Tangang, F.T., Juneng,
L., Salimun, E., Vinayachandran, P.N., Seng, Y.K., Reason, C.J.C., Behera, S.K.
& Yasunari, T. 2008. On the roles of the northeast cold surge, the Borneo
vortex, the Madden-Julian Oscillation, and the Indian Ocean Dipole during the
extreme 2006/2007 flood in southern Peninsular Malaysia. Geophysical
Research Letters 35(14): L14S07.
Taraphdar, S.,
Mukhopadhyay, P., Leung, L.R., Zhang, F., Abhilash, S. & Goswami, B.N.
2014. The role of moist processes in the intrinsic predictability of Indian
Ocean cyclones. Journal of Geophysical Research: Atmospheres 119(13):
8032-8048.
Yavinchan, S., Exell,
R.H.B. & Sukawat, D. 2011. Convective parameterization in a model for the
prediction of heavy rain in Southern Thailand. Journal of the Meteorological
Society of Japan 89A: 201-224.
Zhang, F., Odins, A.M.
& Nielsen-Gammon, J.W. 2006. Mesoscale predictability of an extreme
warm-season precipitation event. Weather and Forecasting 21(2): 149-166.
Zhang, F., Snyder, C.
& Rotunno, R. 2002. Mesoscale predictability of the “surprise” snowstorm of
24-25 January 2000. Monthly Weather Review 130(6): 1617-1632.
Zhang, F., Snyder, C.
& Rotunno, R. 2003. Effects of moist convection on mesoscale predictability. Journal of the Atmospheric Sciences 60(9): 1173-1185.
Zheng, Y., Alapaty, K.,
Herwehe, J.A., Del Genio, A.D. & Niyogi, D. 2016. Improving high-resolution
weather forecasts using the Weather Research and Forecasting (WRF) Model with
an updated Kain-Fritsch Scheme. Monthly Weather Review 144(3): 833-860.
*Pengarang
untuk surat-menyurat; email: tangang@ukm.edu.my
|