Sains Malaysiana 48(11)(2019):
2463–2472
http://dx.doi.org/10.17576/jsm-2019-4811-16
Assessment of Heavy
Metal Attenuation and Mobility in Compacted Soil Columns
(Penilaian Pembantutan
dan Kemobilan Logam Berat dalam Turus Tanah Terpadat)
WAN ZUHAIRI, W.Y.*
& NURITA, R.
Center for Earth
Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 18
April 2019/Diterima: 15 Ogos 2019
ABSTRACT
Groundwater pollution
from unlined landfill is a worrying problem nowadays. In order to reduce the
pollution, a good soil liner is very important. Natural compacted soil is used
to prevent leachate from reaching the groundwater. The soil column study was
performed to investigate the retention capability of three soil types in
Malaysia, namely marine clay (SBMC), weathered metasediments
(HMS)
and river alluvium soil (ARA). All soil columns were tested
against four types of heavy metals, i.e. lead (Pb), copper (Cu), nickel (Ni)
and zinc (Zn). The breakthrough curves show that the SBMC has
better retention capability on heavy metals compared to other soils; indicating
less migration of heavy metals through SBMC soil column. The affinity
of heavy metals for adsorption were also varied with soil types and can be
ranked as follow: SBMC (Pb>Cu>Ni ≈ Zn) and HMS/ARA: Zn ≈ Cu>Pb>N.
Soil SBMC showed very high resistance to acidic test solution
(i.e. high buffering capacity), where the pH values throughout the test were in
an alkaline region with the values of pH 8 to 7. The study also discovered that
heavy metals entered the soil columns were retained predominantly at the top 30
mm. Engineering applications of these findings show that soil SBMC has
a very good potential to function as soil liner material compared to two other
soils (ARA and HMS).
Keywords: Breakthrough
curves; column experiment; heavy metals; retention profile; soil liner
ABSTRAK
Pencemaran air bawah
tanah dari tapak pelupusan sisa tidak berlapik adalah suatu masalah yang
membimbangkan pada masa kini. Untuk mengurangkan pencemaran, pelapik tanah yang
baik sangat penting. Tanah semula jadi yang dipadatkan digunakan untuk mencegah
cecair larut resapan daripada mencemari air bawah tanah. Kajian turus tanah
dilakukan untuk mengkaji keupayaan penahanan tiga jenis tanah di Malaysia,
iaitu lempung marin (SBMC), tanah metasedimen (HMS)
dan tanah aluvium sungai (ARA). Kesemua tanah diuji terhadap
empat jenis logam berat, iaitu plumbum (Pb), kuprum (Cu), nikel (Ni) dan zink
(Zn). Graf lengkung penembusan menunjukkan bahawa tanah SBMC mempunyai
keupayaan penahanan logam berat yang lebih baik berbanding dengan tanah lain.
Ini menunjukkan logam berat kurang mengalami migrasi melalui ruang tanah SBMC.
Pemilihan logam berat untuk penjerapan juga berbeza-beza dengan jenis tanah dan
boleh disenaraikan seperti berikut: SBMC (Pb>Cu>Ni ≈ Zn) dan HMS/ARA: Zn ≈ Cu>Pb>Ni.
Tanah SBMC menunjukkan rintangan yang sangat tinggi terhadap
larutan berasid (iaitu kapasiti penampan tinggi), dengan nilai pH sepanjang
ujian berada dalam keadaan alkali antara pH 8 hingga 7. Kajian ini juga
mendapati bahawa logam berat yang memasuki liang tanah mengalami penahanan
terutamanya pada bahagian 30 mm teratas. Aplikasi kejuruteraan penemuan ini
menunjukkan bahawa tanah SBMC mempunyai potensi yang sangat
baik untuk berfungsi sebagai bahan pelapik tanah dibandingkan dengan dua tanah
lain (ARA dan HMS).
Kata kunci: Lengkung
penembusan; logam berat; pelapik tanah; profil penahanan; ujian turus
RUJUKAN
Abollino,
O., Aceto, M., Malandrino, M., Sarzanini, C. & Mentasti, E. 2003.
Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic
substances. Water Research 37: 1619-1627.
Antoniadis,
V., McKinley, J.D. & Wan Zuhairi, W.Y. 2007. Single-element and competitive
metal mobility measured with column infiltration and batch test. Journal of
Environmental Quality 32: 865-875.
Bittel,
J.R. & Miller, R.J. 1974. Lead, cadmium and calcium selectivity
coefficients on montmorillonite, illite and kaolinite. Journal
of Environmental Quality 3: 250-253.
Bohác,
P., Delavernhe, L., Zervas, E., Königer, F., Schuhmann, R.
& Emmerich, K. 2019. Cation exchange capacity of bentonite in
a saline environment. Applied Geochemistry 100 (October 2018):
407-413. https://doi.org/10.1016/j. apgeochem.2018.12.019.
Bright,
M.I., Thornton, S.F., Lerner, D.N. & Tellam, J.H. 1996. Laboratory
investigations into designed high attenuation landfill liners. In Engineering
Geology of Waste Disposal, Vol. 11, edited by Bentley, S.P. London:
Geological Society Engineering Geology Special Publications. pp. 159-164.
British
Standard Institution, BS1377. 1990. Method of Test for Soils for Civil
Engineering Purposes.
Calace,
N., Massimiani, A., Petronio, M. & Pietroletti, M. 2001. Municipal landfill
leachate - soil interactions: A kinetic approach. Chemosphere 44(5):
1025-1031.
Chalermyanont,
T., Arrykul, S. & Charoenthaisong, N. 2009. Potential use of lateritic and
marine clay soils as landfill liners to retain heavy metals. Waste Management 29(1): 117-127.
Chotpantaratat,
S., Ong, S.K., Sutthirat, C. & Osathaphana, K. 2011. Competitive sorption
and transport of Pb2+, Ni2+,
Mn2+, and Zn2+ in lateritic soil columns. Journal of Hazardous Materials 190:
391-396.
CIRIA.
1996. Barriers, Liners and Cover Systems for Containment and Control of Land
Contamination. Construction Industry Research and Information Association,
Special Publication 124. London: Thomas Telford.
Davis,
J.A. 1984. Complexation of trace metals by adsorbed natural organic matter. Geochimica
et Cosmochimica Acta 48: 679-691.
Department
of Environment (DOE). 1995. Landfill design, construction and operational
practice. Waste Management Paper 26B, HMSO.
Farrah,
H. & Pickering, W.F. 1977. Influence of clay-solute interactions
on aqueous heavy metal ion levels. Water, Air Soil Pollute
8: 189-197.
Farrah,
H. & Pickering, W.F. 1976. The sorption of zinc species by clay
minerals. Australian Journal Chemical 29: 1649-1656.
Frost,
R.R. & Griffin, R.A. 1977. Effect of pH on adsorption of cooper, zinc and
cadmium from landfill leachate by clay minerals. Journal of Environmental
Science and Health 12(4&5): 139-156.
Geotechnical
Research Centre Laboratory Manual. 1985. Laboratory Manual. Mc Gill University,
Montreal Canada (unpublished).
Griffin,
R.A. & Shimp, N.F. 1978. Attenuation of Pollutants in Municipal Landfill
Leachate by Clay Minerals. Report: EPA-600/2-78-157. U.S Environmental
Protection Agency.
Griffin,
R.A. & Shimp, N.F. 1976. Effect of pH on the exchange-adsorption or precipitation
of lead from landfill leachates by clay minerals. Environmental Science and
Technology 10: 1256- 1261.
Griffin,
R.A., Shimp, N.F., Steele, J.D., Ruch, R.R., White, W.A. & Hughes, G.M.
1976. Attenuation of pollutants in municipal landfill leachate by passage
through clay. Environmental Science and Technology 10: 1262-1268.
Gupta,
S.K. & Chen, K.Y. 1975. Partitioning of trace metals in selective chemical
fractions of near shore sediments. Environ. Lett. 10: 129-158.
Hesse,
P.R. 1972. A Textbook of Soil Chemical Analysis. New York: Chemical
Publishing Co. Inc.
Li,
L.Y. & Li, F. 2001. Heavy metal sorption and hydraulic conductivity studies
using three types of bentonite admixes. Journal of Environmental Engineering 127(5): 20-429.
Li,
L., Lin, C. & Zhang, Z. 2017. Utilization of shale-clay mixtures as a
landfill liner material to retain heavy metals. Materials & Design 114:
73-82.
Lo,
I.M. & Liljestrand, H.M. 1996. Laboratory sorption and hydraulic
conductivity tests: Evaluation of modified clay materials. Waste Management
& Research 14: 297-310. https://doi.org/10.1177/0734242X9601400305.
Musso,
T.B., Parolo, M.E., Pettinari, G. & Francisca, F.M. 2014. Cu(II) and Zn(II)
adsorptio capacity of three different clay liner materials. Journal of
Environmental Management 146: 50-58.
Rendina,
A. & de Iorio, A.F. 2012. Heavy metal partitioning in bottom sediments of
the Matanza-Riachuelo River and Main Tributary streams. Soil & Sediment
Contamination 21(1): 62-81. DOI: 10.1080/15320383.2012.636776.
Rubinos,
D.A. & Spagnoli, G. 2019. Assessment of red mud as sorptive
landfill liner for the retention of arsenic. Journal of Environmental
Management 232: 271-285.
Sahu, S., Nath, B., Roy,
S., Mandal, B. & Chatterjee, D. 2012. Bioavailability of arsenic in the
soil horizon: A laboratory column study. Environ. Earth Sci. 65(3):
813-821.
Scrudato, R.J. &
Estes, E.L. 1975. Clay-lead sorption studies. Environmental Geology 1:
167-170.
Segalen, P. 1968. Note
sur une methode de determination des produits mineraux amorphes
dans certains sols a hydroxides tropicaux. Cah, Orstom Ser. Pedol.
6: 105-126.
Tessier, A., Rapin, F.
& Carignan, R. 1985. Trace metals in oxic lake sediments: Possible
adsorption onto iron oxyhydroxides. Geochimica et Cosmochimica
Acta 49: 183-194.
Tessier, A., Campbell,
P.G.C. & Bison, M. 1979. Sequential extraction procedure for the speciation
of particulate trace metals. Anal. Chem. 51: 844-850.
Wan Zuhairi, W.Y. &
Abdul Rahim Samsudin. 2007. Sorption parameters of Pb and Cu on natural clay
soils from Selangor, Malaysia. Sains Malaysiana 36(2): 149-157.
Wan Zuhairi, W.Y. 2003a.
Heavy metal sorption capabilities of some soil samples from active landfill
sites in Selangor. Geological Society of Malaysia Bulletin 46: 295-297.
Wan Zuhairi, W.Y. 2003b.
Sorption capacity on lead, copper and zinc by clay soils from South Wales,
United Kingdom. Journal of Environmental Geology 45(2): 236-242.
Wan Zuhairi, W.Y. 2001.
Soils suitability for landfill liner material based on their physico-chemical
properties: A case study from South Wales, United Kingdom. Majalah Geologi
Indonesia (MGI - Special Edition ISSN 0216-1061) 16: 115-122.
Wan Zuhairi, W.Y. 2000.
An investigation of natural attenuation characteristic of natural clay soils
from South Wales and their potential use as engineered clay liner. PhD Thesis,
Cardiff University (Unpublished).
Wan Zuhairi, W.Y., Abdul
Rahim, S., Mohd Ramziemran & Chan, Y.L. 2004. Natural sorption capability
of heavy metals: Granitic residual soil from Broga and marine clay from Sg.
Besar Selangor. Geological Society of Malaysia Bulletin 48: 13-16.
William, J.D. 1997. Groundwater
Geochemistry: Fundamental and Application to Contamination. Boca Raton:
Lewis Publisher.
Yanful, E.K., Quigley,
R.M. & Nesbitt, H.W. 1988. Heavy metal migration at a landfill site,
Sarnia, Ontario, Canada-2: Metal partitioning and geotechnical implications. Applied
Geochemistry 3: 623-629.
Yang, Q.L., Zhang, J.L.,
Yang, Q., Yu, Y.X. & Yang, G. 2012. Behavior and mechanism of
Cd(II) adsorption on loess-modified clay liner. Desalin. Water
Treat 39(1-3): 10-20.
Yong, R.N. 2001. Contaminated
Soils, Pollutant Fate and Mitigation. New York: CRC Press.
Yong, R.N. & Phadungchewit,
Y. 1993. pH influence on selectivity and retention of heavy metals
in some clay soil. Canadian Geotechnical Journal 30: 821-833.
Yong, R.N., Yaacob, W.Z.W.,
Bentley, S.P., Harris, C. & Tan, B.K. 2001. Partitioning of
heavy metals on soil samples from column tests. Engineering Geology
60: 307-322.
Yong, R.N., Galvez-Cloutier,
R. & Phadungchewit, Y. 1993. Selective sequential extraction
analysis of heavy metal retention in soil. Canadian Geotechnical
Journal 30: 834- 847.
Yong, R.N., Mohamed, A.M.O.
& Warkentin, B.P. 1992. Principles of Contaminant Transport
in Soils. New York: Elsevier.
Zarime, N.A. & Wan
Yaacob, W.Z. 2016. The movement of cadmium (Cd) through compacted granitic
residual soil using mini column infiltration technique. Sains Malaysiana 45(12):
1905-1912.
*Pengarang
untuk surat-menyurat; email: yaacobzw@ukm.edu.my
|