Sains Malaysiana 48(11)(2019): 2595–2604
http://dx.doi.org/10.17576/jsm-2019-4811-29
Rock Slope Stability Analysis based
on Terrestrial LiDAR on Karst Hills in Kinta Valley Geopark,
Perak, Peninsular Malaysia
(Analisis Kestabilan Cerun Batuan berdasarkan LiDAR Daratan di Bukit Batu Kapur Geotaman Lembah Kinta, Perak, Semenanjung
Malaysia)
MUHAMMAD AFIQ ARIFF HELLMY1, ROS FATIHAH MUHAMMAD1*, MUSTAFFA KAMAL SHUIB1, NG THAM FATT1, WAN HASIAH ABDULLAH1, AISHAH ABU BAKAR2 & RALPH KUGLER1
1Department
of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
2Department
of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
Diserahkan:
20 April 2019/Diterima: 15 Ogos 2019
ABSTRACT
The use
of modern mapping technology is necessary in assessing slopes and
cliffs, especially in tropical countries as it is mostly inaccessible
and covered with thick vegetation which restricts the conventional
data collection to only at the base of the cliff. Overhanging and
sub-vertical characteristics of tropical karst hills in Kinta Valley
together with highly fractured and day-lighting joints increase
the possibility of rock slope failure. The problem statement of
this research is how Terrestrial Laser Scanning (TLS)
can assist the traditional survey in slope characterization. The
main objective of this research was to assess the stability of the
limestone hills in Kinta Valley based on the output provided by
terrestrial LiDAR and scanline survey method. TLS helps engineers and geologists
to collect a high number of discontinuity data where it is inaccessible
for manual compass data measurement. A total number of about 13
cliffs on 4 limestone hills were assessed. Gunung Lang and Kek Lok
Tong show major potential failure trending towards east, Gunung
Lanno towards southwest, Kwan Yin Tong towards west, and Gunung
Cheroh with three directions of failure which are pointed towards
the south, southwest and southeast direction. The overall results
showed that the orientation of the major joint sets and the direction
of the failure greatly influence the karst hills morphology in the
Kinta Valley. The integration of LiDAR method with the manual compass
clinometer has become a better approach to assess the stability
of limestone hills and other rock slope in the possible future.
Keywords:
Limestone hills; slope stability; terrestrial laser scanning
ABSTRAK
Penggunaan teknologi pemetaan moden ialah satu
keperluan dalam
menilai cerun dan
tebing terutamanya
di negara tropika kerana kebanyakan kawasannya tidak boleh diakses dan
diliputi oleh
tumbuhan yang tebal yang mengehadkan pengumpulan data secara konvensional yakni pada bahagian
bawah cerun
sahaja. Ciri gunung
batu kapur tropika yang curam dan sub-menegak di Lembah Kinta bersama dengan retakan teruk dan satah
yang mengarah keluar
dari cerun meningkatkan
kecenderungan kegagalan
cerun batuan. Pernyataan
masalah kajian
ini adalah bagaimana
LiDAR daratan boleh
membantu tinjauan tradisi dalam pencirian
cerun. Objektif
utama penyelidikan ini adalah untuk
menilai kestabilan
gunung batu kapur
di Lembah Kinta berdasarkan
output yang disediakan oleh
LiDAR daratan dan
kaedah tinjauan garis imbasan. Imbasan laser terestrial laser (TLS)
membantu jurutera
dan ahli geologi
mengumpul data ketakselanjaran
dalam bilangan
yang tinggi di kawasan yang tidak dapat diakses
untuk pengukuran
data secara manual oleh kompas klinometer. Sebanyak tiga belas
cerun daripada
empat gunung batu
kapur telah
dinilai. Gunung Lang dan Kek Lok
Tong menunjukkan tren
jatuhan ke arah
timur, Gunung
Lanno ke arah
barat daya,
Kwan Yin Tong ke arah barat
dan Gunung Cheroh ke arah
selatan, barat
daya dan tenggara.
Keputusan keseluruhan
menunjukkan orientasi utama kekar dan
arah jatuhan
batuan mempengaruhi morfologi gunung karst di Lembah Kinta. Integrasi LiDAR dan kompas klinometer
secara manual merupakan
pendekatan yang baik untuk menilai kestabilan
gunung batu
kapur dan cerun
batuan lain pada
masa hadapan.
Kata kunci: Bukit batu kapur; imbasan laser terestrial; kestabilan
cerun
RUJUKAN
Agliardi,
F. & Crosta, G.B. 2003. High resolution three-dimensional numerical
modelling of rockfalls. International Journal of Rock Mechanics and Mining
Sciences 40(4): 455-471. https://doi.org/https://doi.org/10.1016/S1365-
1609(03)00021-2.
Besl,
P.J. & McKay, N.D. 1992. Method for registration of 3-D shapes. Sensor
Fusion IV: Control Paradigms and Data Structures 1611: 586-606.
Cawood,
A.J., Bond, C.E., Howell, J.A., Butler, R.W. & Totake, Y. 2017. LiDAR, UAV
or compass-clinometer? Accuracy, coverage and the effects on structural models. Journal of Structural Geology 98: 67-82.
Chen,
S., Goh, T.L., Han, L. & Tovele, G.S. 2019. Effects of tectonic stresses
and structural planes on slope deformation and stability at the Buzhaoba open
Pit Mine, China. Sains Malaysiana 48(2): 317-324.
Chen,
Y. & Medioni, G. 1992. Object modelling by registration of multiple range
images. Image and Vision Computing 10(3): 145-155.
Dunning,
S.A., Massey, C.I. & Rosser, N.J. 2009. Structural and geomorphological
features of landslides in the Bhutan Himalaya derived from terrestrial laser
scanning. Geomorphology 103(1): 17-29.
Escher,
B.G. 1931. The Goenoeng Sewoe and the problem of the Karst in the Tropics. Acts
of the XXIII. Dutch Natural and Medical Congress. pp. 259-261.
Ferrero,
A.M., Forlani, G., Roncella, R. & Voyat, H.I. 2009. Advanced geostructural
survey methods applied to rock mass characterization. Rock Mechanics and
Rock Engineering 42(4): 631-665.
Ghani,
M.F.A., Tuan Rusli, M., Abdul Ghani, R. & Ailie, S.S. 2018. A systematic
approach of rock slope stability assessment: A case study at Gunung Kandu,
Gopeng, Perak, Malaysia. Sains Malaysiana 47(7): 1413-1421.
Ghani,
M.F.A., Norbert, S., Goh, T.L., Tuan Rusli, M. & Abdul Ghani, R. 2016.
Study of lineament density in potential evaluation of rock fall in Kinta
Valley. Sains Malaysiana 45(12): 1887-1896.
Goh,
T.L., Ainul Mardhiyah, M.R., Nur Amanina, M., Abdul Ghani, R., Nur Ailie, S.S.
& Tuan Rusli, M. 2016. Rock slope stability assessment using slope mass
rating (SMR) method: Gunung Lang Ipoh Malaysia. Scholar Journal of
Engineering and Technology 4(4): 185-192.
Guzzetti,
F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M.
& Salvati, P. 2004. Landslides triggered by the 23 November 2000 rainfall
event in the Imperia Province, Western Liguria, Italy. Engineering Geology 73(3-4):
229-245.
Hoek,
E. & Bray, J. 1981. Rock Slope Engineering. 3rd ed. London: The
Institution of Miningand Metallurgy.
Ingham,
F.T. & Bradford, E.F. 1960. The Geology and Mineral Resources of the
Kinta Valley, Perak. No. 9. Federation of Malaya: Geological Survey.
Lato,
M.J. & Vöge, M. 2012. Automated mapping of rock discontinuities in 3D LiDAR
and photogrammetry models. International Journal of Rock Mechanics and
Mining Sciences 54: 150-158.
Marquinez,
J., Duarte, R.M., Farias, P. & Sanchez, M.J. 2003. Predictive GIS-based
model of rockfall activity in mountain cliffs. Natural Hazards 30(3):
341-360.
Muhammad,
R.F. & Tjia, H.D. 2003. The morphostructures
of Kinta Valley karst. Bulletin of the Geological Society of
Malaysia 46: 319-328.
Norbert,
S., Ghani, M.F.A., Azimah, H., Goh, T.L., Abdul Ghani, R., Noraini,
S., Tuan Rusli, T.M. & Lee, K.E. 2015. Assessment of rockfall
potential of limestone hills in the Kinta Valley. Journal of
Sustainability Science and Management 10(2): 24-34.
Nur
Amanina, M., Goh, T.L., Ainul Mardhiyah, M.R., Abdul Ghani, R., Ailie, S.S.,
Norbert, S., Noraini, S., Lee, K.E. & Tuan Rusli, M. 2018. The
geomechanical strength of carbonate rock in Kinta valley, Ipoh, Perak Malaysia. AIP Conference Proceedings 1940: 020046-1 - 020046-8. doi:
10.1063/1.5027961.
Priest,
S.D. 1993. The collection and analysis of discontinuity orientation data for
engineering design, with examples. In Rock Testing and Site Characterization,
edited by Hudson, J.A. Oxford: Pergamon Press. pp. 167-192.
Priest,
S.D. & Hudson, J. 1981. Estimation of discontinuity spacing and trace
length using scanline surveys. International Journal of Rock Mechanics and
Mining Sciences & Geomechanics Abstracts 18(3): 183-197.
Romana,
M. 1985. New adjustment ratings for application of Bieniawski classification
to slopes. Proceedings of the International Symposium on Role
of Rock Mechanics, Zacatecas, Mexico. pp. 49-53.
Rossi,
G. 1986. Karst and structure in tropical areas: The Malagasi example. In New
Direction in Karst: Proceedings of the Anglo-French Symposium, edited by
Paterson, K. & Sweeting M.M. Norwich: Geo Books. 1983: 189-212.
Song,
L.H. 1989. Geological structure: An important factor controlling karst
development. In New Direction in Karst: Proceedings of the
Anglo-French Symposium. Paterson, K. & Sweeting M.M. Norwich: Geo
Books. 1983: 165-174.
Spreafico, M.C., Perotti, L., Cervi, F., Bacenetti, M.,
Bitelli, G., Girelli, V.A., Mandanici, E., Tini, M.A. & Borgatti, L. 2015.
Terrestrial remote sensing techniques to complement conventional geomechanical
surveys for the assessment of landslide hazard: The San Leo case study (Italy). European Journal of Remote Sensing 48(1): 639-660.
Sturzenegger,
M. & Stead, D. 2009. Close-range terrestrial digital photogrammetry and
terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering
Geology 106(3-4): 163-182.
Tan,
B.K. 1988. Geologi Kejuruteraan Kawasan Sekitaran Ipoh, Perak. (Engineering
geology of the Ipoh area, Perak). Laporan Akhir Projek Penyelidikan No.7/86,
Sept. 1988, UKM. p. 74.
Tjia,
Hong Djin. 1969. Slope development in tropical karst. Zeitschrift fuer
Geomorphologie 13(3): 260-66.
Yiu,
K. & King, B. 2009. Stereonet data from terrestrial laser scanner point
clouds. Survey Review 41(314): 324-338. doi: 10.1179/003962609X45173.
*Pengarang untuk
surat-menyurat; email: rosfmuhammad@um.edu.my
|