Sains Malaysiana 48(12)(2019):
2807–2815
http://dx.doi.org/10.17576/jsm-2019-4812-22
Study on Numerical Solution of a
Variable Order Fractional Differential Equation based on Symmetric Algorithm
(Kajian
Penyelesaian Berangka Peringkat Berubah Persamaan Pembezaan Pecahan berdasarkan
Algoritma Simetri)
Jingrui Liu & Dongyang Pan*
The
School of Mathematics and Computer Science, Xinyang Vocational and Technical
College, Xinyang, 464000, China
Diserahkan: 21 Februari 2019/ Diterima: 23 Disember
2019
ABSTRAK
As the class of
fractional differential equations with changing order has attracted more
attention and attention in the fields of research and engineering, it is
important to study its numerical solutions. Numerical solution algorithm for a
class of fractional differential equations with transformed arrays based on the
proposed symmetry algorithm. The symmetry classification is used for the class
of values of the boundary problem of the fractional differential equation with
the order of change. A fully symmetric classification of the boundary value
problem for a class of fractional differential equations with variable
sequences is determined by using a fully symmetric differential sequence
sorting algorithm. The problem of the boundary value of the fractional
differential equation with the transformed order is reduced to the initial
value of the ordinary differential equation. The Legendre polynomial method is
used to solve the numerical solution of the starting value of the differential
equation. The common differential equation is transformed into a matrix series
product by a different operator matrix. The matrix products are converted to
algebraic equations by discrete variables. By solving the equations, the
numerical solution of the starting value of the common differential equation is
obtained.
Keywords: Boundary value
problem; differential equation; numerical solution; operator matrix; symmetric
algorithm; variable fractional order
ABSTRAK
Oleh kerana kelas persamaan
pembezaan pecahan dengan susunan berubah telah menarik banyak perhatian
dan perhatian dalam bidang penyelidikan dan kejuruteraan, ia amat
penting untuk mengkaji penyelesaian berangkanya. Algoritma penyelesaian
berangka untuk kelas persamaan pembezaan pecahan dengan transformasi
tatasusunan berdasarkan algoritma simetri yang dicadangkan. Pengelasan
simetri digunakan untuk nilai kelas masalah sempadan persamaan pembezaan
pecahan dengan susunan berubah. Pengelasan simetrik sepenuhnya masalah
nilai sempadan untuk kelas persamaan pembezaan pecahan dengan jujukan
pemboleh ubah ditentukan dengan menggunakan algoritma pengisihan
jujukan pembezaan simetrik sepenuhnya. Masalah nilai sempadan persamaan
pembezaan pecahan dengan peringkat berubah dikurangkan kepada masalah
nilai awal persamaan pembezaan biasa. Kaedah polinomial Legendre
digunakan untuk menyelesaikan penyelesaian berangka masalah nilai
permulaan persamaan pembezaan. Persamaan pembezaan biasa diubah
menjadi produk siri matriks oleh pengendali matriks lain. Produk
matriks ditukar kepada persamaan algebra oleh variat diskret. Dengan
menyelesaikan persamaan, penyelesaian berangka nilai permulaan persamaan
pembezaan biasa diperoleh.
Kata kunci: Algoritma simetri;
masalah nilai sempadan; matriks pengendali; penyelesaian berangka; peringkat
pecahan berubah; persamaan pembezaan
RUJUKAN
Baeumer, B., Geissert,
M. & Kovács, M. 2015. Existence, uniqueness and regularity for a class of
semilinear stochastic Volterra equations with multiplicative noise. Journal of Differential Equations 258(2): 535-554.
Bauer, M., Escher, J.
& Kolev, B. 2015. Local and global well-posedness of the fractional order
EPDiff equation on R d R d mathContainer Loading Mathjax. Journal of Differential Equations 258(6): 2010-2053.
Bhrawy, A.H. & Zaky,
M.A. 2016. Numerical algorithm for the variable-order Caputo fractional
functional differential equation. Nonlinear
Dynamics 85(3): 1815-1823.
Bhrawy, A.H. & Zaky,
M.A. 2015. Numerical simulation for two-dimensional variable-order fractional
nonlinear cable equation. Nonlinear
Dynamics 80(1-2): 101-116.
Carrillo, J.A., Huang,
Y. & Santos, M.C. 2015. Exponential convergence towards stationary states
for the 1D porous medium equation with fractional pressure. Journal of Differential Equations 258(3): 736-763.
Cozzi, M. &
Passalacqua, T. 2016. One-dimensional solutions of non-local Allen-Cahn-type
equations with rough kernels. Journal of
Differential Equations 260(8): 6638-6696.
Danca, M.F. 2015.
Lyapunov exponents of a class of piecewise continuous systems of fractional
order. Nonlinear Dynamics 81(1-2):
227-237.
El‐Sayed, A.A.
& Agarwal, P. 2019. Numerical solution of multiterm variable‐order
fractional differential equations via shifted Legendre polynomials. Mathematical
Methods in the Applied Sciences 42(2): 3978-3991.
Harko, T. & Liang,
S.D. 2016. Exact solutions of the Liénard- and generalized Liénard-type
ordinary nonlinear differential equations obtained by deforming the phase space
coordinates of the linear harmonic oscillator. Journal of Engineering Mathematics 98(1): 93-111.
Liu, Y., Du, Y.W. &
Li, H. 2015. A two-grid finite element approximation for a nonlinear
time-fractional Cable equation. Nonlinear
Dynamics 85(4): 1-14.
Pan, X.L., Wang, Z.W. & Wei, D. 2017. Nonlinear dynamic model
simulation of proton exchange membrane fuel cell based on load change. Chinese Journal of Power Sources 41(2):
227-229.
Rossi, J.D. & Topp,
E. 2016. Large solutions for a class of semilinear integro-differential
equations with censored jumps. Journal of
Differential Equations 260(9): 6872-6899.
Shao, S.Y. & Chen, M. 2015. Synchronization control for
a class of fractional order nonlinear chaotic systems. Computer Simulation 32(4): 394-398.
Wang, D.D., Zhang, B. & Qiu, D.Y. 2017. Phasor analysis method and
study of sinusoidal steady state characteristics of the fractional-order
circuits. Journal of Power Supply 15(2): 34-40.
Yu, J., Wang, D.S. &
Sun, Y. 2016. Modified method of simplest equation for obtaining exact
solutions of the Zakharov–Kuznetsov equation, the modified Zakharov–Kuznetsov
equation, and their generalized forms. Nonlinear
Dynamics 85(4): 2449-2465.
Zhang, W., Liu, W. &
Li, W. 2015. Independently tunable multichannel fractional-order temporal
differentiator based on a silicon-photonic symmetric Mach–Zehnder
interferometer incorporating cascaded microring resonators. Journal of Lightwave Technology 33(2):
361-367.
Zhang, Y., Qin, Z.C. & Zhang, W.D. 2017. Asymmetric interference
alignment for device-to-device underlaying cellular networks. Journal of China Academy of Electronics and
Information Technology 12(6): 232-236.
Zúñiga-Aguilar, C.J., Romero-Ugalde, H.M. & Gómez-Aguilar,
J.F. 2017. Solving fractional differential equations of variable-order
involving operators with Mittag-Leffler kernel using artificial neural
networks. Chaos Solitons & Fractals 103(2): 382-403.
*Pengarang
untuk surat-menyurat; email: paneastsun@163.com
|