Sains Malaysiana 48(1)(2019): 111–119
http://dx.doi.org/10.17576/jsm-2019-4801-13
Functions
and Application of Glomalin-Related Soil Proteins: A Review
(Fungsi
dan Penggunaan Protein Tanah Berkaitan Glomalin: Suatu Ulasan)
WEI-QIN GAO1, PENG WANG2 & QIANG-SHENG WU1,3*
1College
of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
2Institute of Citrus
Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
3Department of
Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove
50003, Czech Republic
Diserahkan: 12 Mei 2018/Diterima: 10 September 2018
ABSTRACT
Glomalin that is a kind of glycoprotein produced by arbuscular mycorrhizal
fungi in the phylum Glomeromycota, has some characteristics of hydrophobins with insolubility and
difficulty in its extraction. The protein is highly homologous with
heat shock protein 60. In soils, glomalin is measured as glomalin-related
soil protein (GRSP). GRSP is
highly positively correlated with soil aggregate stability, because
it is a new component of soil organic matter. The mycorrhiza-released
glomalin has represented potential functioning in soil ecosystems,
which include promoting the storage of soil organic carbon, improving
the structure of soil aggregates, enhancing the resistance of plants,
and reducing the metal toxicity of plants. In addition, some potted
and field experiments have been performed to exogenously apply the
GRSP in crop plants to confirm the GRSP
roles. Hence, GRSP is one of the most significant
multidisciplinary topics between fungal physiology and soil biochemistry.
Despite much work performed on glomalin from 1996, there are still
gaps of GRSP that needs to be solved, including purification, structural
features and environmental responses.
Keywords: Carbon cycle; drought stress; extraction; mycorrhiza;
soil aggregation
ABSTRAK
Glomalin merupakan sejenis glikoprotein yang dihasilkan oleh kulat
mikoriza arbuskel pada filum Glomeromycota, mempunyai ciri-ciri hidrofobin dengan ketidaklarutan dan kesukaran
dalam pengekstrakan. Protein adalah sangat homolog dengan protein
kejutan haba 60. Dalam tanah, glomalin diukur sebagai protein tanah
berkaitan glomalin (GRSP). GRSP adalah
sangat positif berkolerasi dengan kestabilan agregat tanah, kerana
ia adalah satu komponen baharu jirim tanah organik. Glomalin pelepasan
mikoriza telah mewakili potensi berfungsi dalam ekosistem tanah,
termasuk menggalakkan penyimpanan karbon organik tanah, memperbaiki
struktur agregat tanah, meningkatkan ketahanan tumbuh-tumbuhan dan
mengurangkan logam ketoksikan tumbuh-tumbuhan. Di samping itu, sesetengah
uji kaji tanaman pasu dan lapangan telah dijalankan secara eksogen
untuk menggunakan GRSP dalam
tanaman tumbuhan untuk mengesahkan peranan GRSP.
Oleh itu, GRSP adalah salah satu daripada topik pelbagai disiplin
yang paling ketara antara kulat fisiologi dan biokimia tanah. Walaupun
banyak kerja yang dilakukan pada glomalin dari tahun 1996, masih
terdapat jurang GRSP
yang perlu diselesaikan, termasuk penulenan, ciri
struktur dan tindak balas alam sekitar.
Kata kunci: Kitaran karbon;
mikoriza; pengagregatan tanah; pengekstrakan; tekanan kemarau
RUJUKAN
Aguilera, P., Borie, F., Seguel, A. &
Cornejo, P. 2012. Fluorescence detection of aluminum in arbuscular mycorrhizal
fungal structures and glomalin using confocal laser scanning microscopy. Soil
Biology and Biochemistry 43: 2427-2431.
Averill, C., Turner, B.L. & Finzi, A.C.
2014. Mycorrhiza-mediated competition between plants and decomposers drives
soil carbon storage. Nature 505: 543-545.
Bedini, S. 2010. Molecular characterization and
glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal
polluted ash disposal island, downtown Venice. Soil Biology and Biochemistry 42: 758-765.
Bolliger, A., Nalla, A., Magid, J., Ade, N.,
Nalla, A.D. & Boghansen, T.C. 2008. Re-examining the glomalin-purity of
glomalin-related soil protein fractions through immunochemical, lectin-affinity
and soil labelling experiments. Soil Biology and Biochemistry 40:
887-893.
Borie, F., Rubio, R. & Morales, A. 2008.
Arbuscular mycorrhizal fungi and soil aggregation Journal of Soil Science and
Plant Nutrition 8: 9-18.
Bronick, C.J. & Lal, R. 2005. Soil structure
and management: A review. Geoderma 124: 3-22.
Chen, Y.T., Xu, Y., Ji, D.H., Chen, C.S. &
Xie, C.T. 2015. Cloning and expression analysis of two small heat shock protein
(sHsp) genes from Pyropia haitanensis. Journal of Fisheries of China 39:
182-192.
Chi, G.G., Srivastava, A.K. & Wu, Q.S. 2018.
Exogenous easily extractable glomalin-related soil protein improves drought
tolerance of trifoliate orange. Archives of Agronomy and Soil Science 64:
1341-1350.
Dai, J., Hu, J.L., Zhu, A.N., Bai, J.F., Wang,
J.H. & Lin, X.G. 2015. No tillage enhances arbuscular mycorrhizal fungal
population, glomalin-related soil protein content, and organic carbon
accumulation in soil macroaggregates. Journal of Soils and Sediments 15:
1055-1062.
Driver, J.D., Holben, W.E. & Rillig, M.C.
2005. Characterization of glomalin as a hyphal wall component of arbuscular
mycorrhizal fungi. Soil Biology and Biochemistry 37: 101- 106.
Du, P., Srivastava, A.K., Liu, C.Y., Chen, F.
& Wu, Q.S. 2015. Optimization of glomalin-related soil protein extraction
in soil of citrus (Citrus species) orchard. Current Horticulture 3:
3-6.
Gadkar, V. & Rillig, M.C. 2006. The
arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat
shock protein 60. FEMS Microbiology Letters 263: 93-101.
Guo, Y.N., Zou, Y.L. & He, X.L. 2017. Study
on the correlation between colonization of arbuscular mycorrhiza fungi and
glomalin and soil factors in Ammopiptanthus mongolicus. China
Sciencepaper 12: 1030-1037.
Hammer, E.C. & Rillig, M.C. 2011. The
influence of different stresses on glomalin levels in an arbuscular mycorrhizal
fungus-salinity increases glomalin content. PLoS One 6: e28426.
Huang, X.G., Li, S.X., Liu, F.J. & Lan, W.R.
2018. Regulated effects of Prorocentrum donghaiense Lu exudate on nickel
bioavailability when cultured with different nitrogen sources. Chemosphere 197:
57-64.
Koide, R.T. & People, M.S. 2013. Behavior of
Bradford-reactive substances is consistent with predictions for glomalin. Applied
Soil Ecology 63: 8-14.
Kumar, A., Ashraf, S., Goud, T.S., Grewal, A.,
Singh, S.V., Yadav, B.R. & Upadhyay, R.C. 2015. Expression profiling of
major heat shock protein genes during different seasons in cattle (Bos
indicus) and buffalo (Bubalus bubalis) under tropical climatic
condition. Journal of Thermal Biology 51: 55-64.
Kumar, S., Singh, A.K. & Ghosh, P. 2018.
Distribution of soil organic carbon and glomalin related soil protein in
reclaimed coal mine-land chronosequence under tropical condition. Science of
the Total Environment 625: 1341-1350.
Kumar, V. & Chopra, A.K. 2013. Distribution,
enrichment and accumulation of heavy metals in soil and Trigonella
foenum-graecum L. (Fenugreek) after fertigation with paper mill effluent. Open
Journal of Metal 3: 8-20.
Meier, S., Borie, F., Bolan, N. & Cornejo,
P. 2012. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal
fungi. Critical Reviews in Environmental Science and Technology 42:
741-775.
Nichols, K.A. 2008. Indirect contributions of AM
fungi and soil aggregation to plant growth and protection. In Mycorrhizae:
Sustainable Agriculture and Forestry, edited by Siddiqui, Z.A., Akhtar, S.
& Futai, K. Springer: Dordrecht. pp. 177-194.
Nichols, K.A. & Wright, S.F. 2005.
Comparison of glomalin and humic acid in eight native U.S. Soils. Soil
Science 170: 985-997.
Oyewole, B.O., Olawuyi, O.J., Odebode, A.C.
& Abiala, M.A. 2017. Influence of arbuscular mycorrhiza fungi (AMF) on
drought tolerance and charcoal rot disease of cowpea. Biotechnology Reports 14:
8-15.
Preger, A.C., Rillig, M.C., Johns, A.R., Du
Preez, C.C., Lobe, I. & Amelung, W. 2007. Losses of glomalin-related soil
protein under prolonged arable cropping: A chronosequence study in sandy soils
of the South African Highveld. Soil Biology and Biochemistry 39(2):
445-453.
Purin, S. & Rillig, M.C. 2008. The
arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a
new hypothesis for its function. Pedobiologia 51: 123-130.
Purin, S., Filho, O.K. & Sturmer, S.L. 2006.
Mycorrhizae activity and diversity in conventional and organic apple orchards
from Brazil. Soil Biology and Biochemistry 38: 1831-1839.
Rillig, M.C. 2004. Arbuscular mycorrhizae,
glomalin, and soil aggregation. Canadian Journal of Soil Science 84:
355-363.
Rillig, M.C. & Steinberg, P.D. 2002.
Glomalin production by an arbuscular mycorrhizal fungus: A mechanism of habitat
modification. Soil Biology and Biochemistry 34: 1371-1374.
Rillig, M.C., Trigueros, C.A., Bergmann, J.,
Verbruggen, E., Veresoglou, S.D. & Lehmann, A. 2015. Plant root and
mycorrhizal fungal traits for understanding soil aggregation. New
Phytologist 205: 1385-1388.
Rillig, M.C., Wright, S.F. & Eviner, V.T.
2002. The role of arbuscular mycorrhizal fungi and glomalin in soil
aggregation: Comparing effects of five plant species. Plant and Soil 238:
325-333.
Rosier, C.L., Piotrowski, J.S., Hoye, A.T. &
Rillig, M.C. 2008. Intraradical protein and glomalin as a tool for quantifying
arbuscular mycorrhizal root colonization. Pedobiologia 52: 41-50.
Rosier, C.L., Hoye, A.T. & Rillig, M.C.
2006. Glomalin-related soil protein: Assessment of current detection and
quantification tools. Soil Biology and Biochemistry 38: 2205-2211.
Saha, R., Mondal, B. & Naskar, B. 2014. AMF inoculation
changes, the root development pattern of plants at early stage of colonization. International Journal of Bioresource Science 1: 43-47.
Schindler, F.V.,
Mercer, E.J. & Rice, J.A. 2007. Chemical characteristics of
glomalin-related soil protein (GRSP) extracted from soils of varying organic
matter content. Soil Biology and Biochemistry 39: 320-329.
Seguel, A., Cumming, J.R., Klugh-Stewart, K., Cornejo, P.
& Borie, F. 2013. The role of arbuscular mycorrhizas in decreasing
aluminium phytotoxicity in acidic soils: A review. Mycorrhiza 23(3):
167-183.
Singh, A.K., Rai, A., Pandey, V. & Singh, N. 2017.
Contribution of glomalin to dissolve organic carbon under different land uses
and seasonality in dry tropics. Journal of Environmental Management 192:
142-149.
Singh, P.K. 2012. Role of glomalin related soil protein
produced by arbuscular mycorrhizal fungi: A review. Agricultural Science
Research Journal 2: 119-125.
Steinberg, P.D. & Rillig, M.C. 2003. Differential
decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biology
and Biochemistry 35: 191-194.
Tang, P.H., Dang, K.L., Wang, L.H. & Ma, J. 2016.
Factors affecting soil organic carbon density in betula albo-sinensis forests
on the southern slope of the Ginling Mountains. Acta Ecologica Sinica 36:
1030-1039.
Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta,
G. & Bonfante, P. 2006. Assessment of arbuscular mycorrhizal fungal
diversity in roots of Solidago gigantea growing in a polluted soil in
Northern Italy. Environmental Microbiology 8: 971-983.
Vodnik, D., Grčman, H., Maček, I., Van Elteren,
J.T. & Kovačevič, M. 2008. The contribution of glomalin-related
soil protein to Pb and Zn sequestration in polluted soil. Science of the
Total Environment 392: 130-136.
Wang, M.Y., Xia, R.X. & Wang, P. 2010. Effects of
arbuscular mycorrhizal fungi on available iron and metals sequestered by
glomalin in different rhizospheric soil of Poncirus trifoliata. Journal
of Fujian Agriculture and Forestry University (Natural Science Edition) 39:
42-46.
Wang, S. & Wu, Q.S. 2015. Distribution of
glomalin-related soil protein and soil organic carbon in water-stable aggregate
fractions of citrus rhizosphere. BioTechnology: An Indian Journal 11:
14-17.
Wang, S., Wu, Q.S. & He, X.H. 2015. Exogenous easily
extractable glomalin-related soil protein promotes soil aggregation, relevant
soil enzyme activities and plant growth in trifoliate orange. Plant Soil and
Environment 61: 66-71.
Wright, S.F., Upadhyaya, A. & Buyer, J.S. 1998.
Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal
fungi and soils by capillary electrophoresis. Soil Biology and Biochemistry 30:
1853-1857.
Wright, S.F., Franke-Snyder, M., Morton, J.B. &
Upadhyaya, A. 1996. Time-course study andpartial characterization of a protein
on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant
and Soil 181: 193-203.
Wright, S.F. & Upadhyaya, A. 1998. A survey of soils for
aggregate stability and glomalin, a glycoprotein produced by hyphae of
arbuscular mycorrhizal fungi. Plant and Soil 198: 97-107.
Wright, S.F. & Upadhyaya, A. 1996. Extraction of an
abundant and unusual protein from soil and comparison with hyphal protein of
arbuscular mycorrhizal fungi. Soil Science 161: 575-586.
Wu, Q.S., Srivastava, A.K. & Cao, M.Q. 2016a.
Systematicness of glomalin in roots and mycorrhizosphere of a split-root
trifoliate orange. Plant Soil and Environment 62: 508-514.
Wu, Q.S., Wang, S. & Srivastava, A.K. 2016b. Mycorrhizal
hyphal disruption induces changes in plant growth, glomalin-related soil
protein and soil aggregation of trifoliate orange in a core system. Soil and
Tillage Research 160: 82-91.
Wu, Q.S., Li, Y., Zou, Y.N. & He, X.H. 2015a. Arbuscular
mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities
in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 25: 121-130.
Wu, Q.S., Srivastava, A.K., Wang, S. & Zeng, J.X. 2015b.
Exogenous application of EE-GRSP and changes in citrus rhizosphere properties. Indian
Journal of Agricultural Sciences 85: 802-806.
Wu, Q.S., Cao, M.Q., Zou, Y.N. & He, X.H. 2014a. Direct
and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate
stability in rhizosphere of trifoliate orange. Scientific Reports 4:
5823.
Wu, Q.S., Huang, Y.M., Li, Y. & He, X.H. 2014b.
Contribution of arbuscular mycorrhizas to glomalin-related soil protein, soil
organic carbon and aggregate stability in citrus rhizosphere. International
Journal of Agriculture and Biology 16: 207-212.
Wu, Q.S., Xia, R.X. & Zou, Y.N. 2008. Improved soil
structure and citrus growth after inoculation with three arbuscular mycorrhizal
fungi under drought stress. European Journal of Soil Biology 44:
122-128.
Wu, Z.P., McGrouther, K., Huang, J.D., Wu, P.B., Wu, W.D.
& Wang, H.L. 2014. Decomposition and the contribution of glomalin-related
soil protein (GRSP) in heavy metal sequestration: Field experiment. Soil
Biology and Biochemistry 68: 283-290.
Wu, Z.P., Huang, J.D., Wu, P.B. & Wu, W.D. 2013.
Decomposition of glomalin-related soil protein and its correlations with soil
characteristics on the basis of a field experiment. Guangdong Agricultural
Sciences 40: 65-67.
Xie, X.Y., Weng, B.S., Zhao, S.Z. & Yan, C.L. 2013.
Effects of arbuscular mycorrhizal inoculation and Cd stress on the growth and
antioxidant enzyme system of Kandelia obovata. Journal of Xiamen
University 52: 244-253.
Xu, J. & Tang, M. 2013. Relationship between arbuscular
mycorrhizal fungi and soil factors in the rhizosphere of different tree species
in Pb-Zn polluted mine. Journal of Northwest Agriculture and Forestry
University 41: 75-80.
Xu, Z.Y., Tang, M., Chen, H., Ban, Y.H. & Zhang, H.H.
2012. Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Science of the Total
Environment 453: 435-436.
Yang, Y., He, C., Huang, L., Ban, Y. & Tang, M. 2017.
The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein
distribution, aggregate stability and their relationships with soil properties
at different soil depths in lead-zinc contaminated area. PLoS ONE 12:
e0182264.
Yang, Z.Y., Zong, J., Zhu, X.Z. & Ling, W.T. 2016.
Correlations of glomalin contents and PAHs removal in alfalfa-vegetated soils
with inoculation of arbuscular mycorrhizal fungi. Journal of
Agro-Environment Science 33: 349-354.
Yao, Q. & Zhu, H.H. 2010. Arbuscular mycorrhizal fungi:
A belowground regulator of plant diversity in grasslands and the hidden
mechanisms. In Grassland Biodiversity-Habitat Types, Ecological Processes
and Environmental Impacts, edited by Runas, J. & Dahlgren, T. New York:
Nova Science Publisher. pp. 1-14.
Zhang,
J., Tang, X.L., Zhong, S.Y., Yin, G.C., Gao, Y.F. & He, X.H. 2017a.
Recalcitrant carbon components in glomalin-related
soil protein facilitate soil organic carbon preservation in tropical forests. Scientific
Reports 7: 2391.
Zhang, Z.H., Wang, Q.,
Wang, H., Nie, S. & Liang, Z.W. 2017b. Effects of soil salinity on the
content, composition, and ion binding capacity of glomalin-related soil protein
(GRSP). Science of the Total Environment 581: 657-665.
Zou, Y.N., Srivastava, A.K. & Wu, Q.S. 2016. Glomalin: A
potential soil conditioner for perennial fruits. International Journal of
Agriculture and Biology 18: 293-297.
Zou, Y.N., Srivastava, A.K., Wu, Q.S. & Huang, Y.M.
2014. Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus
tangerina) during soil water deficit. Archives of Agronomy and Soil
Science 60: 1103-1114.
Zou, Y.N. & Wu, Q.S. 2011. Efficiencies of five
arbuscular mycorrhizal fungi in alleviating salt stress of trifoliate orange. International
Journal of Agriculture and Biology 13: 991-995.
*Pengarang
untuk surat-menyurat; email: wuqiangsh@163.com
|