Sains Malaysiana 48(1)(2019): 111–119

http://dx.doi.org/10.17576/jsm-2019-4801-13

 

Functions and Application of Glomalin-Related Soil Proteins: A Review

(Fungsi dan Penggunaan Protein Tanah Berkaitan Glomalin: Suatu Ulasan)

 

WEI-QIN GAO1, PENG WANG2 & QIANG-SHENG WU1,3*

 

1College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China

 

2Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China

 

3Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic

 

Diserahkan: 12 Mei 2018/Diterima: 10 September 2018

 

ABSTRACT

Glomalin that is a kind of glycoprotein produced by arbuscular mycorrhizal fungi in the phylum Glomeromycota, has some characteristics of hydrophobins with insolubility and difficulty in its extraction. The protein is highly homologous with heat shock protein 60. In soils, glomalin is measured as glomalin-related soil protein (GRSP). GRSP is highly positively correlated with soil aggregate stability, because it is a new component of soil organic matter. The mycorrhiza-released glomalin has represented potential functioning in soil ecosystems, which include promoting the storage of soil organic carbon, improving the structure of soil aggregates, enhancing the resistance of plants, and reducing the metal toxicity of plants. In addition, some potted and field experiments have been performed to exogenously apply the GRSP in crop plants to confirm the GRSP roles. Hence, GRSP is one of the most significant multidisciplinary topics between fungal physiology and soil biochemistry. Despite much work performed on glomalin from 1996, there are still gaps of GRSP that needs to be solved, including purification, structural features and environmental responses.

 

Keywords: Carbon cycle; drought stress; extraction; mycorrhiza; soil aggregation

 

ABSTRAK

Glomalin merupakan sejenis glikoprotein yang dihasilkan oleh kulat mikoriza arbuskel pada filum Glomeromycota, mempunyai ciri-ciri hidrofobin dengan ketidaklarutan dan kesukaran dalam pengekstrakan. Protein adalah sangat homolog dengan protein kejutan haba 60. Dalam tanah, glomalin diukur sebagai protein tanah berkaitan glomalin (GRSP). GRSP adalah sangat positif berkolerasi dengan kestabilan agregat tanah, kerana ia adalah satu komponen baharu jirim tanah organik. Glomalin pelepasan mikoriza telah mewakili potensi berfungsi dalam ekosistem tanah, termasuk menggalakkan penyimpanan karbon organik tanah, memperbaiki struktur agregat tanah, meningkatkan ketahanan tumbuh-tumbuhan dan mengurangkan logam ketoksikan tumbuh-tumbuhan. Di samping itu, sesetengah uji kaji tanaman pasu dan lapangan telah dijalankan secara eksogen untuk menggunakan GRSP dalam tanaman tumbuhan untuk mengesahkan peranan GRSP. Oleh itu, GRSP adalah salah satu daripada topik pelbagai disiplin yang paling ketara antara kulat fisiologi dan biokimia tanah. Walaupun banyak kerja yang dilakukan pada glomalin dari tahun 1996, masih terdapat jurang GRSP yang perlu diselesaikan, termasuk penulenan, ciri struktur dan tindak balas alam sekitar.

 

Kata kunci: Kitaran karbon; mikoriza; pengagregatan tanah; pengekstrakan; tekanan kemarau

RUJUKAN

Aguilera, P., Borie, F., Seguel, A. & Cornejo, P. 2012. Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biology and Biochemistry 43: 2427-2431.

Averill, C., Turner, B.L. & Finzi, A.C. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543-545.

Bedini, S. 2010. Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biology and Biochemistry 42: 758-765.

Bolliger, A., Nalla, A., Magid, J., Ade, N., Nalla, A.D. & Boghansen, T.C. 2008. Re-examining the glomalin-purity of glomalin-related soil protein fractions through immunochemical, lectin-affinity and soil labelling experiments. Soil Biology and Biochemistry 40: 887-893.

Borie, F., Rubio, R. & Morales, A. 2008. Arbuscular mycorrhizal fungi and soil aggregation Journal of Soil Science and Plant Nutrition 8: 9-18.

Bronick, C.J. & Lal, R. 2005. Soil structure and management: A review. Geoderma 124: 3-22.

Chen, Y.T., Xu, Y., Ji, D.H., Chen, C.S. & Xie, C.T. 2015. Cloning and expression analysis of two small heat shock protein (sHsp) genes from Pyropia haitanensis. Journal of Fisheries of China 39: 182-192.

Chi, G.G., Srivastava, A.K. & Wu, Q.S. 2018. Exogenous easily extractable glomalin-related soil protein improves drought tolerance of trifoliate orange. Archives of Agronomy and Soil Science 64: 1341-1350.

Dai, J., Hu, J.L., Zhu, A.N., Bai, J.F., Wang, J.H. & Lin, X.G. 2015. No tillage enhances arbuscular mycorrhizal fungal population, glomalin-related soil protein content, and organic carbon accumulation in soil macroaggregates. Journal of Soils and Sediments 15: 1055-1062.

Driver, J.D., Holben, W.E. & Rillig, M.C. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 37: 101- 106.

Du, P., Srivastava, A.K., Liu, C.Y., Chen, F. & Wu, Q.S. 2015. Optimization of glomalin-related soil protein extraction in soil of citrus (Citrus species) orchard. Current Horticulture 3: 3-6.

Gadkar, V. & Rillig, M.C. 2006. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiology Letters 263: 93-101.

Guo, Y.N., Zou, Y.L. & He, X.L. 2017. Study on the correlation between colonization of arbuscular mycorrhiza fungi and glomalin and soil factors in Ammopiptanthus mongolicus. China Sciencepaper 12: 1030-1037.

Hammer, E.C. & Rillig, M.C. 2011. The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus-salinity increases glomalin content. PLoS One 6: e28426.

Huang, X.G., Li, S.X., Liu, F.J. & Lan, W.R. 2018. Regulated effects of Prorocentrum donghaiense Lu exudate on nickel bioavailability when cultured with different nitrogen sources. Chemosphere 197: 57-64.

Koide, R.T. & People, M.S. 2013. Behavior of Bradford-reactive substances is consistent with predictions for glomalin. Applied Soil Ecology 63: 8-14.

Kumar, A., Ashraf, S., Goud, T.S., Grewal, A., Singh, S.V., Yadav, B.R. & Upadhyay, R.C. 2015. Expression profiling of major heat shock protein genes during different seasons in cattle (Bos indicus) and buffalo (Bubalus bubalis) under tropical climatic condition. Journal of Thermal Biology 51: 55-64.

Kumar, S., Singh, A.K. & Ghosh, P. 2018. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mine-land chronosequence under tropical condition. Science of the Total Environment 625: 1341-1350.

Kumar, V. & Chopra, A.K. 2013. Distribution, enrichment and accumulation of heavy metals in soil and Trigonella foenum-graecum L. (Fenugreek) after fertigation with paper mill effluent. Open Journal of Metal 3: 8-20.

Meier, S., Borie, F., Bolan, N. & Cornejo, P. 2012. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology 42: 741-775.

Nichols, K.A. 2008. Indirect contributions of AM fungi and soil aggregation to plant growth and protection. In Mycorrhizae: Sustainable Agriculture and Forestry, edited by Siddiqui, Z.A., Akhtar, S. & Futai, K. Springer: Dordrecht. pp. 177-194.

Nichols, K.A. & Wright, S.F. 2005. Comparison of glomalin and humic acid in eight native U.S. Soils. Soil Science 170: 985-997.

Oyewole, B.O., Olawuyi, O.J., Odebode, A.C. & Abiala, M.A. 2017. Influence of arbuscular mycorrhiza fungi (AMF) on drought tolerance and charcoal rot disease of cowpea. Biotechnology Reports 14: 8-15.

Preger, A.C., Rillig, M.C., Johns, A.R., Du Preez, C.C., Lobe, I. & Amelung, W. 2007. Losses of glomalin-related soil protein under prolonged arable cropping: A chronosequence study in sandy soils of the South African Highveld. Soil Biology and Biochemistry 39(2): 445-453.

Purin, S. & Rillig, M.C. 2008. The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function. Pedobiologia 51: 123-130.

Purin, S., Filho, O.K. & Sturmer, S.L. 2006. Mycorrhizae activity and diversity in conventional and organic apple orchards from Brazil. Soil Biology and Biochemistry 38: 1831-1839.

Rillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 84: 355-363.

Rillig, M.C. & Steinberg, P.D. 2002. Glomalin production by an arbuscular mycorrhizal fungus: A mechanism of habitat modification. Soil Biology and Biochemistry 34: 1371-1374.

Rillig, M.C., Trigueros, C.A., Bergmann, J., Verbruggen, E., Veresoglou, S.D. & Lehmann, A. 2015. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist 205: 1385-1388.

Rillig, M.C., Wright, S.F. & Eviner, V.T. 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil 238: 325-333.

Rosier, C.L., Piotrowski, J.S., Hoye, A.T. & Rillig, M.C. 2008. Intraradical protein and glomalin as a tool for quantifying arbuscular mycorrhizal root colonization. Pedobiologia 52: 41-50.

Rosier, C.L., Hoye, A.T. & Rillig, M.C. 2006. Glomalin-related soil protein: Assessment of current detection and quantification tools. Soil Biology and Biochemistry 38: 2205-2211.

Saha, R., Mondal, B. & Naskar, B. 2014. AMF inoculation changes, the root development pattern of plants at early stage of colonization. International Journal of Bioresource Science 1: 43-47.

Schindler, F.V., Mercer, E.J. & Rice, J.A. 2007. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biology and Biochemistry 39: 320-329.

Seguel, A., Cumming, J.R., Klugh-Stewart, K., Cornejo, P. & Borie, F. 2013. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: A review. Mycorrhiza 23(3): 167-183.

Singh, A.K., Rai, A., Pandey, V. & Singh, N. 2017. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics. Journal of Environmental Management 192: 142-149.

Singh, P.K. 2012. Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi: A review. Agricultural Science Research Journal 2: 119-125.

Steinberg, P.D. & Rillig, M.C. 2003. Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biology and Biochemistry 35: 191-194.

Tang, P.H., Dang, K.L., Wang, L.H. & Ma, J. 2016. Factors affecting soil organic carbon density in betula albo-sinensis forests on the southern slope of the Ginling Mountains. Acta Ecologica Sinica 36: 1030-1039.

Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta, G. & Bonfante, P. 2006. Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environmental Microbiology 8: 971-983.

Vodnik, D., Grčman, H., Maček, I., Van Elteren, J.T. & Kovačevič, M. 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment 392: 130-136.

Wang, M.Y., Xia, R.X. & Wang, P. 2010. Effects of arbuscular mycorrhizal fungi on available iron and metals sequestered by glomalin in different rhizospheric soil of Poncirus trifoliata. Journal of Fujian Agriculture and Forestry University (Natural Science Edition) 39: 42-46.

Wang, S. & Wu, Q.S. 2015. Distribution of glomalin-related soil protein and soil organic carbon in water-stable aggregate fractions of citrus rhizosphere. BioTechnology: An Indian Journal 11: 14-17.

Wang, S., Wu, Q.S. & He, X.H. 2015. Exogenous easily extractable glomalin-related soil protein promotes soil aggregation, relevant soil enzyme activities and plant growth in trifoliate orange. Plant Soil and Environment 61: 66-71.

Wright, S.F., Upadhyaya, A. & Buyer, J.S. 1998. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology and Biochemistry 30: 1853-1857.

Wright, S.F., Franke-Snyder, M., Morton, J.B. & Upadhyaya, A. 1996. Time-course study andpartial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil 181: 193-203.

Wright, S.F. & Upadhyaya, A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198: 97-107.

Wright, S.F. & Upadhyaya, A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science 161: 575-586.

Wu, Q.S., Srivastava, A.K. & Cao, M.Q. 2016a. Systematicness of glomalin in roots and mycorrhizosphere of a split-root trifoliate orange. Plant Soil and Environment 62: 508-514.

Wu, Q.S., Wang, S. & Srivastava, A.K. 2016b. Mycorrhizal hyphal disruption induces changes in plant growth, glomalin-related soil protein and soil aggregation of trifoliate orange in a core system. Soil and Tillage Research 160: 82-91.

Wu, Q.S., Li, Y., Zou, Y.N. & He, X.H. 2015a. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 25: 121-130.

Wu, Q.S., Srivastava, A.K., Wang, S. & Zeng, J.X. 2015b. Exogenous application of EE-GRSP and changes in citrus rhizosphere properties. Indian Journal of Agricultural Sciences 85: 802-806.

Wu, Q.S., Cao, M.Q., Zou, Y.N. & He, X.H. 2014a. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports 4: 5823.

Wu, Q.S., Huang, Y.M., Li, Y. & He, X.H. 2014b. Contribution of arbuscular mycorrhizas to glomalin-related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere. International Journal of Agriculture and Biology 16: 207-212.

Wu, Q.S., Xia, R.X. & Zou, Y.N. 2008. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology 44: 122-128.

Wu, Z.P., McGrouther, K., Huang, J.D., Wu, P.B., Wu, W.D. & Wang, H.L. 2014. Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: Field experiment. Soil Biology and Biochemistry 68: 283-290.

Wu, Z.P., Huang, J.D., Wu, P.B. & Wu, W.D. 2013. Decomposition of glomalin-related soil protein and its correlations with soil characteristics on the basis of a field experiment. Guangdong Agricultural Sciences 40: 65-67.

Xie, X.Y., Weng, B.S., Zhao, S.Z. & Yan, C.L. 2013. Effects of arbuscular mycorrhizal inoculation and Cd stress on the growth and antioxidant enzyme system of Kandelia obovata. Journal of Xiamen University 52: 244-253.

Xu, J. & Tang, M. 2013. Relationship between arbuscular mycorrhizal fungi and soil factors in the rhizosphere of different tree species in Pb-Zn polluted mine. Journal of Northwest Agriculture and Forestry University 41: 75-80.

Xu, Z.Y., Tang, M., Chen, H., Ban, Y.H. & Zhang, H.H. 2012. Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Science of the Total Environment 453: 435-436.

Yang, Y., He, C., Huang, L., Ban, Y. & Tang, M. 2017. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 12: e0182264.

Yang, Z.Y., Zong, J., Zhu, X.Z. & Ling, W.T. 2016. Correlations of glomalin contents and PAHs removal in alfalfa-vegetated soils with inoculation of arbuscular mycorrhizal fungi. Journal of Agro-Environment Science 33: 349-354.

Yao, Q. & Zhu, H.H. 2010. Arbuscular mycorrhizal fungi: A belowground regulator of plant diversity in grasslands and the hidden mechanisms. In Grassland Biodiversity-Habitat Types, Ecological Processes and Environmental Impacts, edited by Runas, J. & Dahlgren, T. New York: Nova Science Publisher. pp. 1-14.

Zhang, J., Tang, X.L., Zhong, S.Y., Yin, G.C., Gao, Y.F. & He, X.H. 2017a. Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests. Scientific Reports 7: 2391.

Zhang, Z.H., Wang, Q., Wang, H., Nie, S. & Liang, Z.W. 2017b. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). Science of the Total Environment 581: 657-665.

Zou, Y.N., Srivastava, A.K. & Wu, Q.S. 2016. Glomalin: A potential soil conditioner for perennial fruits. International Journal of Agriculture and Biology 18: 293-297.

Zou, Y.N., Srivastava, A.K., Wu, Q.S. & Huang, Y.M. 2014. Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit. Archives of Agronomy and Soil Science 60: 1103-1114.

Zou, Y.N. & Wu, Q.S. 2011. Efficiencies of five arbuscular mycorrhizal fungi in alleviating salt stress of trifoliate orange. International Journal of Agriculture and Biology 13: 991-995.

 

*Pengarang untuk surat-menyurat; email: wuqiangsh@163.com

 

 

 

 

 

sebelumnya