Sains Malaysiana 48(2)(2019): 281–289
http://dx.doi.org/10.17576/jsm-2019-4802-03
Kebolehupayaan
Fitoremediasi oleh Azolla pinnata dalam Merawat Air Sisa Akuakultur
(Phytoremediation
Capability by Azolla pinnata in Aquaculture Wastewater Treatment)
FARAH DIYANA ARIFFIN1,2, AZHAR ABDUL HALIM1*, MARLIA MOHD HANAFIAH1 & NOR AZIRA RAMLEE1
1Pusat Pengajian Sains
Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaa Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat
Sains Kesihatan dan Gunaan, Fakulti Sains Kesihatan, Universiti Kebangsaan
Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia
Diserahkan: 29 Mac 2018/Diterimakan: 15 September 2018
ABSTRAK
Isu kekurangan sumber air bersih merupakan salah satu masalah
utama pada masa kini. Bahan pencemar di dalam air merupakan antara penyumbang
kepada masalah ini. Salah satu alternatif yang utama dalam penyingkiran bahan
pencemar daripada air sisa adalah melalui kaedah fitoremediasi. Kajian ini
bertujuan mengkaji kecekapan Azolla pinnata dalam merawat air sisa menggunakan kaedah
fitoremediasi. Keberkesanan A. pinnata untuk menyerap nutrien adalah
bergantung kepada kualiti air sisa dan kuantiti A. pinnata yang
digunakan. Seterusnya satu uji kaji untuk menentukan biojisim A. pinnata selepas
rawatan fitoremediasi telah dijalankan. Dalam hasil kajian ini, ammonia dan
fosfat merupakan parameter yang utama dalam menentukan keberkesanan rawatan air
sisa akuakultur menggunakan kaedah fitoremediasi A. pinnata. Hasil
kajian menunjukkan penurunan drastik nilai ammonia apabila air sisa dirawat
menggunakan A. pinnata iaitu daripada nilai bacaan purata 7.47 ke 1.67
mg/L. Sementara itu, kepekatan fosfat juga menunjukkan penurunan ketara selepas
air sisa dirawat dengan A. pinnata daripada nilai purata 5.73 kepada
1.22 mg/L. Hasil daripada rawatan air sisa akuakultur dengan menggunakan
fitoremediasi A. pinnata dapat menunjukkan perubahan disebabkan oleh
peningkatan biojisim dengan nilai tertinggi 147.26 gram.
Kata kunci: Akuakultur; Azolla pinnata; fitoremediasi; rawatan air sisa
ABSTRACT
The issue of lack of clean water sources is one of the main
problems today. Pollutants in the water is one of the contributors to the
problem. One of the major alternatives in the removal of pollutants from
wastewater is through phytoremediation. The objective of this research was to
determine the efficiency of phytoremediation method in treating wastewater
using Azolla pinnata. The
efficacy of A. pinnata to absorb nutrients is dependent on the quality
of wastewater and the quantity of A. pinnata. Further, an experiment to
determine the A. pinnata biomass by phytoremediation method was carried
out. The results of this study show that ammonia and phosphate were the main
parameters in determining the effectiveness of aquaculture wastewater treatment
using A. pinnata. The results showed a drastic decline in the ammonia
when the wastewater was treated with A. pinnata from the average reading
value of 7.47 to 1.67 mg/L. Meanwhile, phosphate concentration also showed a
drastic decline after the wastewater was treated with A. pinnata from
the average value of 5.73 to 1.22 mg/L. The results of treatment of aquaculture
wastewater by using phytoremediation of A. pinnata was able to show
changes due to an increase in biomass with the highest value of 147.26 gram.
Keywords: Aquaculture; Azolla pinnata; phytoremediation: wastewater treatment
RUJUKAN
Abdel-Tawwab, M. 2006. Effect of free-floating
macrophyte, Azolla pinnata on water physico-chemistry, primary
productivity, and the production of Nile Tilapia, Oreochromis niloticus (L.),
and Common Carp, Cyprinus carpio L., in fertilized earthen ponds. J.
Appl. Aquaculture 18(1): 21-41.
Akinbile, C.O., Ogunrinde, T.A., Hasfalina, C.M.
& Hamidi, A.Z. 2015. Phytoremediation of domestic wastewaters in free water
surface constructed wetlands using Azolla pinnata. Int. J. Phytorem. 18(1):
54-61.
Akinbile, C.O. & Yusoff, M.S. 2012.
Assessing Water Hyacinth (Eichhornia crassipes) and lettuce (Pistia
stratiotes) effectiveness in aquaculture wastewater treatment. Int. J.
Phytorem. 14(3): 201-211.
Almeida, C.M.R., Dias, A.C., Mucha, A.P.,
Bordalo, A.A. & Vanconcelos, M.T.S.D. 2007. Influence of surfactant on the
cu phytoremediation potential of a salt marsh plant. Chemosphere 75:
13-140.
APHA. 1999. Standard Methods for the Examination
of Water and Wastewater. Edisi ke-20. Washington: American Public Health
Association.
Arora, A., Saxena, S. & Sharma, D.K. 2006.
Tolerance and phytoaccumulation of chromium by three Azolla species. World
J. Microbiol. Biotechnol. 22: 97-100.
Aziz, H.A., Adlan, M.N., Zahari, M.S.M. &
Alias, S. 2004. Removal of ammoniacal nitrogen (N–NH3)
from municipal solid waste leachate by using activated carbon and limestone. Waste
Manage. Res. 22: 371-375.
Begum, A. & Harikrishna, S. 2010.
Bioaccumulation of trace metals by aquatic plants. Internat. J. Chem. Tech.
Research 2: 250-254.
Boyd, C.E. 2003. Guidelines for aquaculture effluent management at
the farm-level. Aquaculture 226: 101-112.
Boyd, C.E. & Queiroz, J. 2001. Feasibility
of retention structures, settling basins, and best management practices in
effluent regulation for Alabama channel catfish farming. Reviews in
Fisheries Science 9: 43-67.
Boyd, C.E. & Tucker, C.S. 1998. Pond
Aquaculture Water Quality Management. Boston: Kluwer Academic Publishers.
Carlozzi, P. & Padovani, G. 2016. The
aquatic fern Azolla as a natural plant-factory for ammonia removal from
fish-breeding fresh wastewater. Environ. Sci. Pollut. Res. 23(9):
8749-8755.
Clemens, S., Palmgren, M.G. & Krämer, U.
2002. A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci. 7: 309-315.
Deshmukh, A.A., Bandela, N.N., Chavan, J.R.
& Nalawade, P.M. 2013. Studies on potential use of water hyacinth, Pistia and Azolla for municipal waste water treatment. Indian J. Appl.
Res. 3(11): 226-228.
Ebbs, S.D., Lasat, M.M., Brady, D.J., Cornish,
J., Gordon, R. & Kochian, L.V. 1997. Phytoextraction of cadmium and zinc
from a contaminated site. J. Environ. Quali. 26: 1424-1430.
FAO - Food and Agriculture Organization of the
United Nations. 2016. The State of World Fisheries and Aquaculture.
Rome.
Fazilah, A.M., Chai, T.T., Azman, A.S. &
Dayangku, D.M. 2015. Evaluation of the phytoremediation potential of two
medicinal plants. Sains Malaysiana 44(4): 503-509.
Ferdoushi, Z., Haque, F., Khan, S. & Haque,
M. 2008. The effects of two aquatic floating macrophytes (Lemna and Azolla)
as biofilters of nitrogen and phosphate in fish ponds. Turk. J. Fish. Aquat.
Sc. 8: 253-258
Geenens, D., Bixio, B. & Thoeye, C. 2010.
Combined ozone-activated sludge treatment of landfill leachate. Water Sci.
Technol. 44: 359-365.
Gross, A., Boyd, C.E. & Wood, C.W. 2000.
Nitrogen transformations and balance in channel catfish ponds. Aquacultural
Engineering 24: 1-14.
HACH. 2007. DR 2800 Spectrophotometer:
Procedures Manual. Edisi Ke-2. Jerman: Hach Company.
Hechler, W.D. & Dawson, J.O. 1995. Factors
affecting nitrogen fixation in Azolla caroliniana. Transactions of
the Illinois State Academy of Science 88(3&4): 97-107.
Henry-Silva, G.G. & Camargo, A.F.M. 2006.
Efficiency of aquatic macrophytes to treat Nile Tilapia pond effluents. Sci.
Agric. 63(5): 433-438.
Iwao, W. & Corazon, R. 1990. Phosphorus and
nitrogen contents of Azolla grown in the Philippines. Soil Science
and Plant Nutrition 36(2): 319-331.
Jang, J.D., Barford, J.P., Lindawati, K. &
Renneberg, R. 2004. Application of biochemical oxygen demand (BOD) biosensor
for optimization of biological carbon and nitrogen removal from synthetic
wastewater in a sequencing batch reactor system. Biosens. Bioelectron.
19: 805-812.
Kamaruddin, M.A., Mohd Suffian, Y., Abdul Aziz,
H. & Akinbile, C.O. 2013. Recent developments of textile waste water
treatment by adsorption process: A review. Inter. J. Sci Res. Knowledge 1(4):
60-73.
Kobayashi, M., Msangi, S., Batka, M.,
Vannuccini, S., Dey, M.M. & Anderson, J.L. 2015. Fish to 2030: The role and
opportunity for aquaculture. Aquac. Econ. Manag. 19(3): 282-300.
Kropfelova, L., Vymazal, J., Svehla, J. &
Stichova, J. 2009. Removal of trace elements in three horizontal sub-surface
flow constructed wetlands in the Czech Republic. Environ. Poll. J. 157:
1186-1194.
Malar, S., Sahi, S.V., Favas, P.J.C. &
Venkatachalam, P. 2015. Mercury heavy-metal-induced physiochemical changes and
genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ. Sci. Pollut. Res. 22(6): 4597- 4608.
Marlia, M.H., Nan Hamiza, S.M.M. & Nur
Izzah, H.A.A. 2018. Salvinia molesta dan Pistia stratiotes sebagai
agen fitoremediasi dalam rawatan air sisa kumbahan. Sains Malaysiana 47(8):
1625-1634.
Miranda, A.F., Biswas, B., Ramkumar, N., Singh,
R., Kumar, J., James, A., Roddick, F., Lal, B., Subudhi, S., Bhaskar, T. &
Mouradov, A. 2016. Aquatic plant Azolla as the universal feedstock for
biofuel production. Biotechnol. Biofuels 9: 221-237.
Morrice, J.A., Danz, N.P., Regal, R.R., Kelly,
J.R., Niemi, G.J., Reavie, E.D., Hollenhorst, T.P., Axler, R.P., Trebitz, A.S.,
Cotter, A.M. & Peterson, G.S. 2008. Human influences on water quality in Great
Lakes coastal wetlands. Environmental Management 41: 347-357.
Nadarajah, S. & Flaaten, O. 2017. Global
aquaculture growth and institutional quality. Marine Policy 84: 142-151.
Naylor, R.L., Williams, S.L. & Strong, D.R.
2001. Aquaculture-A gateway for exotic species. Science 294: 1655-1656.
Ng, Y.S., Samsudin, N.I.S. & Chan, D.J.C.
2017. Phytoremediation capabilities of Spirodela polyrhiza and Salvinia
molesta in fish farm wastewater: A preliminary study. IOP Conf. Series:
Mater. Sci. Eng. 206: 012084.
Nor Rifhan, S.M.R., Wan Ramlee, W.A.K.,
Syazuani, M.S., Mohd Zaini, N., Sarini, A.W., Zuraida, J. & Muhammad Izzat,
R. 2015. Phytoremediation: Environmental-friendly clean up method. World
Journal of Environmental Pollution 5(2): 16-22.
Rai, P.K. 2007. Wastewater management through
biomass of Azolla pinnata: An eco-sustainable approach. AMBIO 36(5):
426-428.
Raju, A.R., Anitha, C.T., Sidhimol, P.D. &
Rosna, K.J. 2010. Phytoremediation of domestic wastewater by using a free
floating aquatic angiosperm, Lemna minor. Nature Environment and
Pollution Technology 9(1): 83-88.
Schwartz, M.F. & Boyd, C.E. 1994a. Channel
catfish pond effluents. Progressive Fish Culturist 56: 273-281.
Schwartz, M.F. & Boyd, C.E. 1994b. Effluent
quality during harvest of channel catfish from watershed ponds. Progressive
Fish-Culturist 56: 25-32.
Sharma, A. & Sachdeva, S. 2012. Azolla:
Role in phytoremediation of heavy metals. Int. J. Eng. Sci. 1:
2277-9698.
Sim, C.H., Yusoff, M.K., Shutes, B., Ho, S.C.
& Mansor, M. 2008. Nutrient removal in a pilot and full scale constructed
wetland, Putrajaya City, Malaysia. J. Environ. Manage. 88: 307-317.
Siti Hanna, E., Maketab, M., Aznah, N.A.,
Khalida, M., Mohd Arif, H.M.H., Nor Othman, M. & Chelliapan, S. 2014. Water
hyacinth bioremediation for ceramic industry wastewater treatment-application
of rhizofiltration system. Sains Malaysiana 43(9): 1397-1403.
Stepniewska, Z., Bennicilli, R.P., Balakhnina,
T.I., Szajnocha, K., Banach, A. & Wolinska, A. 2005. Potential of Azolla
caroliniana for removal of Pb and Cd from wastewater. Int. Agrophys.
19: 251-255.
Valderrama, A., Tapia, J., Peñailillo, P. &
Carvajal, D.E. 2012. Water phytoremediation of cadmium and copper using Azolla
filiculoides Lam. in a hydroponic system. Water and Environment Journal 27(3):
293-300.
Wang, H., Zhang, H. & Cai, G. 2011. An application of
phytoremediation to river pollution remediation. Procedia Environmental
Sciences 10: 1904-1907.
*Pengarang
untuk surat-menyurat; email: azharhalim@ukm.edu.my
|