Sains Malaysiana 48(2)(2019): 393–399
http://dx.doi.org/10.17576/jsm-2019-4802-17
Insight
Observation into Rapid Discoloration of Batik Textile Effluent by in situ Formations
of Zero Valent Iron
(Pemerhatian
Celik Akal pada Penyahwarnaan Pesat Efluen Tekstil Batik dengan Pembentukan in
situ Ferum Bervalensi Sifar)
MOHD
SHAIFUL
SAJAB1,2*,
NUR
NADIA
NAZIRAH
ISMAIL1,2,
JUDE
SANTANARAJ1,2,
ABDUL
WAHAB
MOHAMMAD1,2,
HASSIMI
ABU
HASSAN1,2,
CHIN
HUA
CHIA3,
SARANI
ZAKARIA3
& AN'AMT MOHAMED
NOOR4
1Research
Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and
Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Chemical
Engineering Programme, Faculty of Engineering and Built Environment, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3School
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Fakulti
Agro Industri dan Sumber Asli, Universiti Malaysia Kelantan, Karung Berkunci
36, Pengkalan Chepa, 16100 Kota Bharu, Kelantan Darul Naim, Malaysia
Diserahkan:
9 Julai 2018/Diterima: 1 Oktober 2018
ABSTRACT
This study aimed to investigate the discoloration of textile
effluent from batik industrial wastewater by Fenton oxidation process using
Fe(II), Fe(III) and in situ formation of
zero valent iron (Fe(0)). The controlled parameters indicate the Fenton oxidation
reaction is ideal on effluent at pH5, concentration colour of 4005 mg/L Pt-Co
units using 0.5 mg/mL of catalyst dosage to meet the regulation for Malaysian
quality water standard. The optimization of Fe(0) precursors, Fe(II) shows a
higher discoloration efficiency in comparison with Fe(III). The synthesized
particles of Fe(0) shows a nano spherical structure in the diameter range of
20-70 nm, aggregated and into a chain-like formation. Subsequently, the
performance of Fe(0) was improved up to 97% discoloration in comparison with
89% discoloration by Fe(II). Whereas, the in situ formation of Fe(0) in
batik effluent shows a complete discoloration ascribable to higher reactivity
than partially oxidized of synthesized ex situ Fe(0). On top of that, in
situ Fe(0) performed at the expeditious reaction in less than five min.
Additionally, the regeneration of Fe(0), Fe(II) and Fe(III) show a potential of
catalyst recyclability up to three cycles of Fenton oxidation but with a
tolerable reduction to 62.1% of effluent discoloration.
Keywords: Colour removal; Fe(0); Fenton oxidation; in situ nanoparticles; textile effluent;
water remediation
ABSTRAK
Kajian ini bermatlamat untuk mengkaji penyahwarnaan efluen tekstil
daripada air sisa industri batik melalui proses pengoksidaan Fenton menggunakan
Fe(II), Fe(III) dan pembentukan in situ ferum bervalensi sifar (Fe(0)). Parameter terkawal
menunjukkan tindak balas pengoksidaan Fenton adalah sesuai ke atas efluen pada
pH5, warna berkepekatan 4005 mg/L Pt-Co unit dengan menggunakan 0.5 mg/mL dos
pemangkin bagi memenuhi pengawalan piawaian kualiti air Malaysia. Pengoptimuman
bagi pelopor Fe(0), menunjukkan Fe(II) memberikan penyahwarnaan yang lebih
cekap berbanding Fe(III). Zarah Fe(0) yang tersintesis menunjukkan struktur nano
bersfera berdiameter dalam julat 20-70 nm, terkumpul dan membentuk struktur
seperti berantai. Kemudian, prestasi Fe(0) telah meningkat sehingga 70%
penyahwarnaan berbanding 89% penyahwarnaan menggunakan Fe(II). Sementara itu,
pembentukan in situ Fe(0) di dalam efluen batik menunjukkan
penyahwarnaan lengkap disebabkan tindak balas yang lebih tinggi berbanding ex
situ Fe(0) tersintesis separa teroksida. Malah, in situ Fe(0)
terhasil pada tindak balas yang pantas dalam masa kurang lima minit. Tambahan
lagi, penjanaan semula Fe(0), Fe(II) dan Fe(III) menunjukkan potensi pengitaran
semula pemangkin sehingga tiga pusingan pengoksidaan Fenton dengan penurunan
yang boleh diterima kepada 62.1% penyahwarnaan.
Kata kunci: Efluen tekstil; nanopartikel in situ; pengoksidaan Fenton; penyingkiran warna pemulihan air
RUJUKAN
Abou-elela, S.I., Ali, M.E.M. & Ibrahim,
H.S. 2016. Combined treatment of retting flax wastewater using Fenton oxidation
and granular activated carbon. Arab. J. Chem. 9: 511-517.
Ahmad, A.L., Harris, W.A., Syafiee & Seng,
O.B. 2002. Removal of dye from wastewater of textile industry using membrane
technology. J. Teknol. 36: 31-44.
Birgani, P.M., Ranjbar, N., Abdullah, R.C.,
Wong, K.T., Lee, G., Ibrahim, S., Park, C., Yoon, Y. & Jang, M. 2016. An
efficient and economical treatment for batik textile wastewater containing high
levels of silicate and organic pollutants using a sequential process of
acidification, magnesium oxide, and palm shellbased activated carbon
application. J. Environ. Manage. 184(2): 229-239.
Bolobajev, J., Kattel, E., Viisimaa, M., Goi,
A., Trapido, M., Tenno, T. & Dulova, N. 2014. Reuse of ferric sludge as an
iron source for the Fenton-based process in wastewater treatment. Chem. Eng.
J. 255: 8-13.
Chatterjee, S., Lim, S.R. & Woo, S.H. 2010. Removal of
reactive black 5 by zero-valent iron modified with various surfactants.
Chem. Eng. J. 160(1): 27-32.
Department
of Environment (DOE), Malaysia. 2011. Environmental Quality. Sewage
and Industrial Effluent. Regulation 1979. Third Schedule Environmental
Quality Act. 1974.
Duarte,
F., Morais, V., Maldonado-Hódar, F.J. & Madeira, L.M. 2013. Treatment of
textile effluents by the heterogeneous Fenton process in a continuous
packed-bed reactor using Fe/activated carbon as catalyst. Chem. Eng. J.
232: 34-41.
Ertugay,
N. & Acar, F.N. 2017. Removal of COD and color from Direct Blue
71 azo dye wastewater by Fenton's oxidation: Kinetic study. Arab.
J. Chem. 10: S1158-S1163.
Feitz,
J.A., Joo, S.H., Huan, J., Sun, Q., Sedlak, D.L. & Waite, T.D., 2005.
Oxidative transformation of contaminants using colloidal zero-valent iron. Colloid.
Surface. A. 265: 88-94.
Jung,
Y.S., Lim, W.T., Park, J.Y. & Kim, Y.H. 2009. Effect of pH on Fenton and
Fenton-like oxidation. Environ. Technol. 30(2): 183-190.
Khalik,
W.F., Ho, L.N., Ong, S.A., Wong, Y.S., Yusoff, N.A. & Ridwan, F. 2015.
Decolorization and mineralization of batik wastewater through solar
photocatalytic process. Sains Malaysiana 44(4): 607-612.
Kusic,
H., Koprivanac, N., Horvat, S., Bakija, S. & Bozic, A.L. 2009. Modeling dye
degradation kinetic using dark- and photo-Fenton type processes. Chem. Eng.
J. 155: 144-154.
Kusic,
H., Koprivanac, N. & Srsan, L. 2006. Azo dye degradation using Fenton type
processes assisted by UV irradiation: A kinetic study. J. Photoc. Photobio.
A. 181: 195-202.
Lin,
S.H. & Chen, M.L. 1997. Purification of textile wastewater effluents by a
combined Fenton process and ion exchange. Desalination 109: 121-130.
Mesquita,
I., Matos, L.C., Duarte, F., Maldonado-Hodar, F.J., Mendes, A. & Madeira,
L.M. 2012. Treatment of azo dye-containing wastewater by a Fenton-like process
in a continuous packed-bed reactor filled with activated carbon. J. Hazard.
Mater. 237-238: 30-37.
Nawaz,
M.S. & Ahsan, M. 2014. Comparison of physico-chemical, advanced oxidation
and biological techniques for the textile wastewater treatment. Alexandria.
Eng. J. 53: 717-722.
Ong,
S.A., Ho, L.N., Wong, Y.S. & Pakri, K.A.M. 2017. Comparative study on the
biodegradation of mixed remazol dyes wastewater between integrated
anaerobic/aerobic and aerobic sequencing batch reactors. Rend. Lincei. 28(3):
497-501.
Pereira,
L. & Alves, M. 2012. Dyes - environmental impact and remediation. In Environmental
Protection Strategies for Sustainable Development, edited by Malik, A.
& Grohmann, E. Springer: Dordrecht. pp. 111-162.
Pereira,
W.S. & Freire, R.S. 2006. Azo dye degradation by recycled waste zero-valent
iron powder. J. Braz. Chem. Soc. 17(5): 832-838.
Phenrat,
T., Saleh, N., Sirk, K., Tilton, R.D. & Lowry, G.V. 2007. Aggregation and
sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ.
Sci. Technol. 41(1): 284-290.
Ramlee,
N.A., Mohd Rodhi, M.N., Anak Brandah, A.D., Anuar, A., Alias, N.H. & Tengku
Mohd, T.A. 2014. Potential of integrated membrane bioreactor in batik dye
degradation - A review. App. Mech. Mater. 575: 50-54.
Rosická,
D. & Sembera, J. 2011. Influence of structure of iron nanoparticles in
aggregates on their magnetic properties. Nanoscale. Res. Lett. 6: 527.
Santos,
F.S.D., Lago, F.R., Yokoyama, L. & Fonseca, F.V. 2017. Synthesis and
characterization of zero-valent iron nanoparticles supported on SBA-15. J.
Mater. Res. Technol. 6(2): 178-183.
Sun,
Y.P., Li, X.Q., Cao, J., Zhang, W.X. & Wang, H.P. 2006. Characterization of
zero-valent iron nanoparticles. Adv. Colloid. Interfac. 120: 47-56.
Torrey,
J.D., Killgore, J.P., Bedford, N.M. & Greenlee, L.F. 2015. Oxidation
behavior of zero-valent iron nanoparticles in mixed matrix water purification
membranes. Environ. Sci-Wat. Res. 1: 146-152.
Wu,
Y., Zhou, S., Qin, F., Zheng, K. & Ye, X. 2010. Modeling the oxidation
kinetics of Fenton’s process on the degradation of humic acid. J. Hazard.
Mater. 179: 533-539.
Yuvakkumar,
R., Elango, V., Rajendran, V. & Kannan, N. 2011. Preparation and
characterization of zero valent Iron nanoparticles. Dig. J. Nanomater. Bios.
6(4): 1771-1776.
Zhang,
Y., Su, Y., Zhou, X., Dai, C. & Keller, A.A. 2013. A new insight on the
core-shell structure of zerovalent iron nanoparticles and its application for
Pb(II) sequestration. J. Hazard. Mater. 263: 685-693.
*Pengarang
untuk surat-menyurat; email: mohdshaiful@ukm.edu.my
|