Sains Malaysiana 48(2)(2019): 407–417
http://dx.doi.org/10.17576/jsm-2019-4802-19
Elektrod
Superkapasitor daripada Komposit Karbon Teraktif dan Grafen dengan
Perekat PVDF-HFP
(Supercapacitor
Electrode from Activated Carbon and Graphene Composite with PVDF-HFP Binder)
MOHAMAD
REDWANI MOHD JASNI, MOHAMAD DERAMAN, ZALITA ZAINUDDIN*, CHIA CHIN
HUA & RAMLI OMAR
School
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
14 Julai 2018/Diterima: 10 Oktober 2018
ABSTRAK
Elektrod superkapasitor elektrokimia dwi-lapisan telah dihasilkan
menggunakan serbuk karbon monolit teraktif (KMT)
sebagai bahan pemula dan grafen sebagai bahan tambah. Elektrod telah
disediakan dengan mencampurkan serbuk KMT dan grafen dengan peratus berat yang
berbeza (0, 5, 10, 20 dan 40 % bt.) yang ditambah larutan poli-vinilidene
fluorida-heksaafluoroprofilen (PVDF-HFP) sebagai agen perekat
serta karbon hitam sebagai agen konduksian. Pencirian fizikal dijalankan
ke atas elektrod dengan menggunakan kaedah pembelauan sinar-X (XRD)
dan isoterma jerapan-nyahjerapan. Prestasi sel superkapasitor dengan
elektrolit akueus 6 M KOH telah diuji menggunakan kaedah spektroskopi impedans
elektrokimia (EIS), voltametri berkitar (CV)
dan cas-discas galvanostatik (GCD). Sel superkapasitor dengan bahan
tambah grafen 5 % bt. (KMT05) didapati mempunyai kapasitans
tentu yang tertinggi (172 F g-1), tenaga tentu yang tertinggi
(11 Wh kg-1), kuasa tentu yang tertinggi (196.13
W kg-1), masa gerak balas terendah (2 s) serta rintangan pemindahan
cas terendah (2.4 Ω) berbanding sel-sel yang lain. Ini menunjukkan bahawa bahan tambah
grafen 5 % bt. adalah optimum untuk meningkatkan prestasi sel. Hasil
ini selaras dengan saiz mikrohablur serta luas permukaan khusus
KMT05X
yang lebih besar berbanding KMT tanpa bahan tambah grafen
(KMT00X).
Kata kunci: Elektrolit akues; elektrod perekat; grafen; karbon
monolit teraktif; serbuk karbon swa-merekat
ABSTRACT
Electrochemical double-layer supercapacitor electrodes were produced
using an activated carbon monolith (ACM)
powder as the precursor and graphene as the additive. Electrodes
were prepared by mixing ACM powder and graphene with different weight percentage
(0, 5, 10, 20 and 40 wt. %) which were added with poly-vinylidene
fluoride-hexafluoropropylene (PVDF-HFP) solution as a binding
agent and carbon black as a conductive agent. Physical characterization
was carried out on the electrodes by using an X-ray diffraction
(XRD)
and adsorption-desorption isotherms methods. Supercapacitor cells
performance using 6 M KOH aqueous electrolyte were tested using electrochemical
impedance spectroscopy (EIS), cyclic voltammetry (CV)
and galvanostatic charge discharges (GCD) methods. Supercapacitor cell
with 5 wt. % graphene additive (KMT05) was found to have the highest
specific capacitance (172 F g-1), highest specific energy (11
Wh kg-1), highest specific power (196.13 W kg-1),
lowest response time (2 s), and lowest charge transfer resistance
(2.4 Ω) compared to other cells. This showed that 5 wt. % graphene additive
is optimum for improving the cell performance. These results are
compatible with the larger microcrystallites size and specific surface
area of KMT05X
have a larger compared to the KMT with no graphene additive
(KMT00X).
Keywords: Activated carbon monoliths; aqueous electrolyte;graphene;
paste electrode; self-adhesive carbon grains
RUJUKAN
Awitdrus., Deraman, M., Talib, I.A., Omar, R.,
Jumali, M.H.H., Taer, E. & Saman, M.M. 2010. Microcrystallite dimension and
total active surface area of carbon electrode from mixtures of pre-carbonized
oil palm empty fruit bunches and green petroleum cokes. Sains Malaysiana 39(1):
83-86.
Ban, S., Zhang, J., Zhang, L., Tsay, K., Song,
D. & Zou, X. 2013. Charging and discharging electrochemical supercapacitors
in the presence of both parallel leakage process and electrochemical
decomposition of solvent. Electrochimica Acta 90: 542-549.
Barsykov, V. & Khomenko, V. 2010. The
influence of polymer binders on the performance of cathodes for lithium-ion
batteries. Scientific Journal of Riga Technical University 21: 67-71.
Chee, W.K., Lim, H.N. & Huang, N.M. 2014.
Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc
oxide flexible supercapacitor. Int. J. Energ. Res. 31(2007): 135-147.
Chen, Y., Zhang, X., Zhang, H., Sun, X., Zhang,
D. & Ma, Y. 2012. High-performance supercapacitors based on a
graphene-activated carbon composite prepared by chemical activation. RSC
Advances 2(20): 7747-7753.
Deraman, M., Ishak, M.M., Farma, R., Awitdrus, Taer, E., Talib,
I.A. & Omar, R. 2011. Binderless composite electrode monolith from carbon
nanotube and biomass carbon activated by H2SO4 and CO2 gas for
supercapacitor. AIP Conference Proceedings 1415: 175-179.
Deraman, M., Awitdrus, Talib, I.A., Omar, R.,
Jumali, M.H.H., Ishak, M.M., Saad, S.K.M., Taer, E., Saman, M.M., Farma, R.
& Yunus, R.M. 2010. Electrical conductivity of carbon pellets prepared from
mixtures of pyropolymers from oil palm bunches and petroleum green coke. AIP
Conference Proceedings 50: 50-53.
Deraman, M., Zakaria, S. & Murshidi, J.A.
2001. Estimation of crystallinity and crystallite size of cellulose in
benzylated fibres of oil palm empty fruit bunches by X-ray diffraction. Japanese
Journal of Applied Physics 40: 3311-3314.
Dolah, B.N.M., Deraman, M., Othman, M.A.R.,
Farma, R., Taer, E., Awitdrus, Basri, N.H., Talib, I.A., Omar, R. & Nor,
N.S.M. 2014. A method to produce binderless supercapacitor electrode monoliths
from biomass carbon and carbon nanotubes. Materials Research Bulletin 60:
10-19.
Dong, X., Xu, H., Wang, X., Huang, Y.,
Chan-Park, M.B. & Zhang, H., Wang, L., Huang, W. & Chen, P. 2012. 3D
graphene à cobalt oxide electrode for high-performance supercapacitor and
enzymeless glucose detection ACS Nano 6(4): 3206-3213.
Emmenegger, C., Mauron, P., Sudan, P., Wenger,
P., Hermann, V., Gallay, R. & Zuttel, J. 2003. Investigation of
electrochemical double-layer (ECDL) capacitors electrodes based on carbon
nanotubes and activated carbon materials. Journal of Power Sources 124(1):
321-329.
Fan, X., Yu, C., Yang, J., Ling, Z. & Qiu,
J. 2014. Hydrothermal synthesis and activation of graphene-incorporated
nitrogen-rich carbon composite for high-performance supercapacitors. Carbon 70:
130-141.
Farma, R., Deraman, M., Awitdrus, Talib, I.A.,
Omar, R., Manjunatha, J.G., Ishak, M.M., Basri, N.H. & Dolah, B.N.M. 2013a.
Physical and electrochemical properties of supercapacitor composite electrodes
prepared from biomass carbon. International Journal of Electrochemical
Science 8: 257-273.
Farma, R., Deraman, M., Awitdrus, A., Talib,
I.A., Taer, E., Basri, N.H., Manjunatha, J.G., Ishak, M.M., Dolah, B.N.M. &
Hashmi, S.A. 2013b. Preparation of highly porous binderless activated carbon
electrodes from fibres of oil palm empty fruit bunches for application in
supercapacitors. Bioresource Technology 132: 254-261.
Gonzlez, A., Goikolea, E., Barrena, J.A. &
Mysyk, R. 2016. Review on supercapacitors: Technologies and materials. Renewable
and Sustainable Energy Reviews 58: 1189-1206.
Gu, W. & Yushin, G. 2014. Review of
nanostructured carbon materials for electrochemical capacitor applications:
Advantages and limitations of activated carbon, carbide-derived carbon,
zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon,
and graphene. Advanced Reviews 3: 424-473.
Ho, M.Y., Khiew, P.S., Isa, D., Tan, T.K., Chiu,
W.S., Chia, C.H., Hamid, M.A.A. & Shamsudin, R. 2014. Nano Fe3 O4-
activated carbon composites for aqueous supercapacitors. Sains Malaysiana 43(6):
885-894.
Jasni, M.R.M., Deraman, M., Suleman, M.,
Zainuddin, Z., Othman, M.A.R., Chia, C.H. & Hashim, M.A. 2017.
Supercapacitor electrodes from activation of binderless green monoliths of
biomass self-adhesive carbon grains composed of varying amount of graphene
additive. Ionics 24(4): 1195-1210.
Jasni, M.R.M., Deraman, M., Hamdan, E., Sazali,
N.E.S., Nor, N.S.M., Ishak, M.M., Basri, N.H., Omar, R., Othman, M.A.R.,
Zulkifli, R., Daik, R. & Suleman. M. 2016a. Effect of KOH treated graphene in
green monoliths of pre-carbonized biomass fibers on the structure, porosity and
capacitance of supercapacitors carbon electrodes. Material Science Forum 846:
551-558.
Jasni, M.R.M., Deraman, M., Suleman, M., Hamdan,
E., Sazali, N.E.S., Nor, N.S.M. & Shamsudin, S.A. 2016b. Effect of
nano-scale characteristics of graphene on electrochemical performance of
activated carbon supercapacitor electrodes. AIP Conference Proceedings 1710:
300341-300349.
Jiang, L., Yan, J., Zhou, Y., Hao, L., Xue, R.,
Jiang, L. & Yi, B. 2013. Activated carbon/graphene composites with
high-rate performance as electrode materials for electrochemical capacitors. Journal
of Solid State Electrochemistry 17(11): 2949-2958.
Ke, Q. & Wang, J. 2016. Graphene-based
materials as supercapacitor electrodes - A review. Journal of Materiomics 2:
37-54.
Kim, T., Jung, G., Yoo, S., Suh, K.S. &
Ruoff, R.S. 2013. Activated graphene-based carbons as supercapacitor electrodes
with macro- and mesopores. ACS Nano 7(8): 6899-6905.
Liu, D., Jia, Z. & Wang, D. 2016.
Preparation of hierarchically porous carbon nanosheet composites with graphene
conductive scaffolds for supercapacitors: An electrostatic-assistant
fabrication strategy. Carbon 100: 664-677.
Nor, N.S.M., Deraman, M., Omar, R., Awitdrus, Farma,
R., Basri, N.H., Dolah, B.N.M., Mamat, N.F., Yatim, B. & Daud, M.N.M. 2015.
Influence of gamma irradiation exposure on the performance of supercapacitor
electrodes made from oil palm empty fruit bunches. Energy 79: 183-194.
Nor, N.S.M., Deraman, M., Suleman, M., Jasni,
M.R.M., Manjunatha J.G., Othman, M.A.R. & Shamsudin S.A. 2017.
Supercapacitors using Binderless activated carbon monoliths electrodes
consisting of a graphite additive and pre-carbonized biomass fibers. International
Journal of Electrochemical Science 12: 2520-2539.
Qu, D. 2002. Studies of the activated carbons
used in double-layer supercapacitors. Journal of Power Sources 109(2):
403-411.
Sevilla, M. & Mokaya, R. 2014. Energy
storage applications of activated carbons: Supercapacitors and hydrogen
storage. Energy Environment Science 7: 1250-1280.
Sing, K.S.W. 1985. Reporting physisorption data
for gas/ solid systems with special reference to the determination of surface
area and porosity. Pure and Applied Chemistry 57(4): 603-619.
Soltaninejad, S., Daik, R., Deraman, M., Chin,
Y.C., Nor, N.S.M., Sazali, N.E.S., Hamdan, E., Jasni, M.R.M., Ishak, M.M.,
Noroozi, M. & Suleman, M. 2015. Physical and electrochemical
characteristics of carbon monoliths electrodes from activation of
pre-carbonized fibers of oil palm empty fruit bunches added with varying amount
of polypyrrole. International Journal of Electrochemical Science 10:
10524-10542.
Sulaiman, K.S., Mat, A. & Arof, A.K. 2016.
Activated carbon from coconut leaves for electrical double-layer capacitor. Ionics 22(6): 911-918.
Taberna, P.L., Simon, P. & Fauvarque, J.F.
2003. Electrochemical characteristics and impedance spectroscopy studies of
carbon-carbon supercapacitors. Journal of the Electrochemical Society 150(3):
A292-A300.
Taer, E., Deraman, M., Talib, I.A., Awitdrus, A., Hashmi, S.A.
& Umar, A.A. 2011. Preparation of a highly porous binderless activated
carbon monolith from rubber wood sawdust by a multi-step activation process for
application in supercapacitors. International Journal of Electrochemical
Science 6: 3301-3315.
Taer,
E., Deraman, M., Talib, I.A., Umar, A.A., Oyama, M. & Yunus, R.M. 2010.
Physical, electrochemical and supercapacitive properties of activated carbon
pellets from pre-carbonized rubber wood sawdust by CO2 activation. Current
Applied Physics 10: 1071-1075.
Tsay,
K.C., Zhang, L. & Zhang, J. 2012. Effects of electrode layer
composition/thickness and electrolyte concentration on both specific
capacitance and energy density of supercapacitor. Electrochimica Acta 60:
428-436.
Wang,
H.Q., Yin, J., Li, Q. & Yin, P. 2014. Current progress on the preparation
of binders for electrochemical supercapacitors. PostDoc Journal: Journal of
Postdoctoral Research 2(1): 31-238.
Wei,
L., Sevilla, M., Fuertes, A.B., Mokaya, R. & Yushin, G. 2012.
Polypyrrole-derived activated carbons for high-performance electrical
double-layer capacitors with ionic liquid electrolyte. Advanced Functional
Materials 22(4): 827-834.
Xie,
Q., Bao, R., Xie, C., Zheng, A., Wu, S., Zhang, Y., Zhang, R. & Zhao, P.
2016. Core-shell N-doped active carbon fiber@ graphene composites for aqueous
symmetric supercapacitors with high-energy and high-power density. Journal
of Power Sources 317: 133-142.
Xu,
Y., Chang, L. & Hu, Y.H. 2016. KOH-assisted microwave post-treatment of
activated carbon for efficient symmetrical double-layer capacitors. International
Journal of Energy Research 41: 728-735.
Xu,
Y., Lin, Z., Huang, X., Liu, Y., Huang, Y. & Duan, X. 2013. Flexible
solid-state supercapacitors based on three-dimensional ACS Nano 7(5):
4042-4049.
Zheng,
C., Zhou, X., Cao, H., Wang, G. & Liu, Z. 2014. Synthesis of porous
graphene/activated carbon composite with high packing density and large
specific surface area for supercapacitor electrode material. Journal of
Power Sources 258: 290-296.
Zhong,
C., Deng, Y., Hu, W., Qiao, J., Zhang, L. & Zhang, J. 2015. A review of
electrolyte materials and compositions for electrochemical supercapacitors. Chem.
Soc. Rev. 44: 7484-7539.
Zhou,
S., Xie, Q., Wu, S., Huang, X. & Zhao, P. 2017. Influence of graphene
coating on supercapacitive behavior of sandwich-like N- and O-enriched porous
carbon/graphene composites in aqueous and organic electrolytes. Ionics 1:
1-9.
Zhu,
Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. & Ruoff, R.S. 2010.
Graphene and graphene oxide: Synthesis, properties, and applications. Advanced
Materials 22: 3906- 3924.
*Pengarang
untuk surat-menyurat; email: zazai@ukm.edu.my
|