Sains Malaysiana 48(2)(2019): 407–417

http://dx.doi.org/10.17576/jsm-2019-4802-19

 

Elektrod Superkapasitor daripada Komposit Karbon Teraktif dan Grafen dengan Perekat PVDF-HFP

(Supercapacitor Electrode from Activated Carbon and Graphene Composite with PVDF-HFP Binder)

 

MOHAMAD REDWANI MOHD JASNI, MOHAMAD DERAMAN, ZALITA ZAINUDDIN*, CHIA CHIN HUA & RAMLI OMAR

 

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 14 Julai 2018/Diterima: 10 Oktober 2018

 

ABSTRAK

Elektrod superkapasitor elektrokimia dwi-lapisan telah dihasilkan menggunakan serbuk karbon monolit teraktif (KMT) sebagai bahan pemula dan grafen sebagai bahan tambah. Elektrod telah disediakan dengan mencampurkan serbuk KMT dan grafen dengan peratus berat yang berbeza (0, 5, 10, 20 dan 40 % bt.) yang ditambah larutan poli-vinilidene fluorida-heksaafluoroprofilen (PVDF-HFP) sebagai agen perekat serta karbon hitam sebagai agen konduksian. Pencirian fizikal dijalankan ke atas elektrod dengan menggunakan kaedah pembelauan sinar-X (XRD) dan isoterma jerapan-nyahjerapan. Prestasi sel superkapasitor dengan elektrolit akueus 6 M KOH telah diuji menggunakan kaedah spektroskopi impedans elektrokimia (EIS), voltametri berkitar (CV) dan cas-discas galvanostatik (GCD). Sel superkapasitor dengan bahan tambah grafen 5 % bt. (KMT05) didapati mempunyai kapasitans tentu yang tertinggi (172 F g-1), tenaga tentu yang tertinggi (11 Wh kg-1), kuasa tentu yang tertinggi (196.13 W kg-1), masa gerak balas terendah (2 s) serta rintangan pemindahan cas terendah (2.4 Ω) berbanding sel-sel yang lain. Ini menunjukkan bahawa bahan tambah grafen 5 % bt. adalah optimum untuk meningkatkan prestasi sel. Hasil ini selaras dengan saiz mikrohablur serta luas permukaan khusus KMT05X yang lebih besar berbanding KMT tanpa bahan tambah grafen (KMT00X).

 

Kata kunci: Elektrolit akues; elektrod perekat; grafen; karbon monolit teraktif; serbuk karbon swa-merekat

 

ABSTRACT

Electrochemical double-layer supercapacitor electrodes were produced using an activated carbon monolith (ACM) powder as the precursor and graphene as the additive. Electrodes were prepared by mixing ACM powder and graphene with different weight percentage (0, 5, 10, 20 and 40 wt. %) which were added with poly-vinylidene fluoride-hexafluoropropylene (PVDF-HFP) solution as a binding agent and carbon black as a conductive agent. Physical characterization was carried out on the electrodes by using an X-ray diffraction (XRD) and adsorption-desorption isotherms methods. Supercapacitor cells performance using 6 M KOH aqueous electrolyte were tested using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge discharges (GCD) methods. Supercapacitor cell with 5 wt. % graphene additive (KMT05) was found to have the highest specific capacitance (172 F g-1), highest specific energy (11 Wh kg-1), highest specific power (196.13 W kg-1), lowest response time (2 s), and lowest charge transfer resistance (2.4 Ω) compared to other cells. This showed that 5 wt. % graphene additive is optimum for improving the cell performance. These results are compatible with the larger microcrystallites size and specific surface area of KMT05X have a larger compared to the KMT with no graphene additive (KMT00X).

 

Keywords: Activated carbon monoliths; aqueous electrolyte;graphene; paste electrode; self-adhesive carbon grains

RUJUKAN

Awitdrus., Deraman, M., Talib, I.A., Omar, R., Jumali, M.H.H., Taer, E. & Saman, M.M. 2010. Microcrystallite dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes. Sains Malaysiana 39(1): 83-86.

Ban, S., Zhang, J., Zhang, L., Tsay, K., Song, D. & Zou, X. 2013. Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent. Electrochimica Acta 90: 542-549.

Barsykov, V. & Khomenko, V. 2010. The influence of polymer binders on the performance of cathodes for lithium-ion batteries. Scientific Journal of Riga Technical University 21: 67-71.

Chee, W.K., Lim, H.N. & Huang, N.M. 2014. Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int. J. Energ. Res. 31(2007): 135-147.

Chen, Y., Zhang, X., Zhang, H., Sun, X., Zhang, D. & Ma, Y. 2012. High-performance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation. RSC Advances 2(20): 7747-7753.

Deraman, M., Ishak, M.M., Farma, R., Awitdrus, Taer, E., Talib, I.A. & Omar, R. 2011. Binderless composite electrode monolith from carbon nanotube and biomass carbon activated by H2SO4 and CO2 gas for supercapacitor. AIP Conference Proceedings 1415: 175-179.

Deraman, M., Awitdrus, Talib, I.A., Omar, R., Jumali, M.H.H., Ishak, M.M., Saad, S.K.M., Taer, E., Saman, M.M., Farma, R. & Yunus, R.M. 2010. Electrical conductivity of carbon pellets prepared from mixtures of pyropolymers from oil palm bunches and petroleum green coke. AIP Conference Proceedings 50: 50-53.

Deraman, M., Zakaria, S. & Murshidi, J.A. 2001. Estimation of crystallinity and crystallite size of cellulose in benzylated fibres of oil palm empty fruit bunches by X-ray diffraction. Japanese Journal of Applied Physics 40: 3311-3314.

Dolah, B.N.M., Deraman, M., Othman, M.A.R., Farma, R., Taer, E., Awitdrus, Basri, N.H., Talib, I.A., Omar, R. & Nor, N.S.M. 2014. A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes. Materials Research Bulletin 60: 10-19.

Dong, X., Xu, H., Wang, X., Huang, Y., Chan-Park, M.B. & Zhang, H., Wang, L., Huang, W. & Chen, P. 2012. 3D graphene à cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection ACS Nano 6(4): 3206-3213.

Emmenegger, C., Mauron, P., Sudan, P., Wenger, P., Hermann, V., Gallay, R. & Zuttel, J. 2003. Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. Journal of Power Sources 124(1): 321-329.

Fan, X., Yu, C., Yang, J., Ling, Z. & Qiu, J. 2014. Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon 70: 130-141.

Farma, R., Deraman, M., Awitdrus, Talib, I.A., Omar, R., Manjunatha, J.G., Ishak, M.M., Basri, N.H. & Dolah, B.N.M. 2013a. Physical and electrochemical properties of supercapacitor composite electrodes prepared from biomass carbon. International Journal of Electrochemical Science 8: 257-273.

Farma, R., Deraman, M., Awitdrus, A., Talib, I.A., Taer, E., Basri, N.H., Manjunatha, J.G., Ishak, M.M., Dolah, B.N.M. & Hashmi, S.A. 2013b. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology 132: 254-261.

Gonzlez, A., Goikolea, E., Barrena, J.A. & Mysyk, R. 2016. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 58: 1189-1206.

Gu, W. & Yushin, G. 2014. Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Advanced Reviews 3: 424-473.

Ho, M.Y., Khiew, P.S., Isa, D., Tan, T.K., Chiu, W.S., Chia, C.H., Hamid, M.A.A. & Shamsudin, R. 2014. Nano Fe3 O4- activated carbon composites for aqueous supercapacitors. Sains Malaysiana 43(6): 885-894.

Jasni, M.R.M., Deraman, M., Suleman, M., Zainuddin, Z., Othman, M.A.R., Chia, C.H. & Hashim, M.A. 2017. Supercapacitor electrodes from activation of binderless green monoliths of biomass self-adhesive carbon grains composed of varying amount of graphene additive. Ionics 24(4): 1195-1210.

Jasni, M.R.M., Deraman, M., Hamdan, E., Sazali, N.E.S., Nor, N.S.M., Ishak, M.M., Basri, N.H., Omar, R., Othman, M.A.R., Zulkifli, R., Daik, R. & Suleman. M. 2016a. Effect of KOH treated graphene in green monoliths of pre-carbonized biomass fibers on the structure, porosity and capacitance of supercapacitors carbon electrodes. Material Science Forum 846: 551-558.

Jasni, M.R.M., Deraman, M., Suleman, M., Hamdan, E., Sazali, N.E.S., Nor, N.S.M. & Shamsudin, S.A. 2016b. Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes. AIP Conference Proceedings 1710: 300341-300349.

Jiang, L., Yan, J., Zhou, Y., Hao, L., Xue, R., Jiang, L. & Yi, B. 2013. Activated carbon/graphene composites with high-rate performance as electrode materials for electrochemical capacitors. Journal of Solid State Electrochemistry 17(11): 2949-2958.

Ke, Q. & Wang, J. 2016. Graphene-based materials as supercapacitor electrodes - A review. Journal of Materiomics 2: 37-54.

Kim, T., Jung, G., Yoo, S., Suh, K.S. & Ruoff, R.S. 2013. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7(8): 6899-6905.

Liu, D., Jia, Z. & Wang, D. 2016. Preparation of hierarchically porous carbon nanosheet composites with graphene conductive scaffolds for supercapacitors: An electrostatic-assistant fabrication strategy. Carbon 100: 664-677.

Nor, N.S.M., Deraman, M., Omar, R., Awitdrus, Farma, R., Basri, N.H., Dolah, B.N.M., Mamat, N.F., Yatim, B. & Daud, M.N.M. 2015. Influence of gamma irradiation exposure on the performance of supercapacitor electrodes made from oil palm empty fruit bunches. Energy 79: 183-194.

Nor, N.S.M., Deraman, M., Suleman, M., Jasni, M.R.M., Manjunatha J.G., Othman, M.A.R. & Shamsudin S.A. 2017. Supercapacitors using Binderless activated carbon monoliths electrodes consisting of a graphite additive and pre-carbonized biomass fibers. International Journal of Electrochemical Science 12: 2520-2539.

Qu, D. 2002. Studies of the activated carbons used in double-layer supercapacitors. Journal of Power Sources 109(2): 403-411.

Sevilla, M. & Mokaya, R. 2014. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environment Science 7: 1250-1280.

Sing, K.S.W. 1985. Reporting physisorption data for gas/ solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57(4): 603-619.

Soltaninejad, S., Daik, R., Deraman, M., Chin, Y.C., Nor, N.S.M., Sazali, N.E.S., Hamdan, E., Jasni, M.R.M., Ishak, M.M., Noroozi, M. & Suleman, M. 2015. Physical and electrochemical characteristics of carbon monoliths electrodes from activation of pre-carbonized fibers of oil palm empty fruit bunches added with varying amount of polypyrrole. International Journal of Electrochemical Science 10: 10524-10542.

Sulaiman, K.S., Mat, A. & Arof, A.K. 2016. Activated carbon from coconut leaves for electrical double-layer capacitor. Ionics 22(6): 911-918.

Taberna, P.L., Simon, P. & Fauvarque, J.F. 2003. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. Journal of the Electrochemical Society 150(3): A292-A300.

Taer, E., Deraman, M., Talib, I.A., Awitdrus, A., Hashmi, S.A. & Umar, A.A. 2011. Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors. International Journal of Electrochemical Science 6: 3301-3315.

Taer, E., Deraman, M., Talib, I.A., Umar, A.A., Oyama, M. & Yunus, R.M. 2010. Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation. Current Applied Physics 10: 1071-1075.

Tsay, K.C., Zhang, L. & Zhang, J. 2012. Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochimica Acta 60: 428-436.

Wang, H.Q., Yin, J., Li, Q. & Yin, P. 2014. Current progress on the preparation of binders for electrochemical supercapacitors. PostDoc Journal: Journal of Postdoctoral Research 2(1): 31-238.

Wei, L., Sevilla, M., Fuertes, A.B., Mokaya, R. & Yushin, G. 2012. Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Advanced Functional Materials 22(4): 827-834.

Xie, Q., Bao, R., Xie, C., Zheng, A., Wu, S., Zhang, Y., Zhang, R. & Zhao, P. 2016. Core-shell N-doped active carbon fiber@ graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. Journal of Power Sources 317: 133-142.

Xu, Y., Chang, L. & Hu, Y.H. 2016. KOH-assisted microwave post-treatment of activated carbon for efficient symmetrical double-layer capacitors. International Journal of Energy Research 41: 728-735.

Xu, Y., Lin, Z., Huang, X., Liu, Y., Huang, Y. & Duan, X. 2013. Flexible solid-state supercapacitors based on three-dimensional ACS Nano 7(5): 4042-4049.

Zheng, C., Zhou, X., Cao, H., Wang, G. & Liu, Z. 2014. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. Journal of Power Sources 258: 290-296.

Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L. & Zhang, J. 2015. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44: 7484-7539.

Zhou, S., Xie, Q., Wu, S., Huang, X. & Zhao, P. 2017. Influence of graphene coating on supercapacitive behavior of sandwich-like N- and O-enriched porous carbon/graphene composites in aqueous and organic electrolytes. Ionics 1: 1-9.

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. & Ruoff, R.S. 2010. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 22: 3906- 3924.

 

*Pengarang untuk surat-menyurat; email: zazai@ukm.edu.my

 

 

 

 

 

sebelumnya